
Multi-Layer Depth of Field Rendering with Tiled Splatting
Linus Franke Nikolai Hofmann Marc Stamminger Kai Selgrad

linus.franke@fau.de nikolai.hofmann@fau.de marc.stamminger@fau.de kai.selgrad@fau.de
Computer Graphics Group, University of Erlangen-Nuremberg

Figure 1: Our novel method to computing depth of field supports partial occlusion and produces consistent, noiseless bokeh
(left, 41fps@720p) by working on screen-space tiles composed of partially multi-layered data. It also manages complicated
and dense partial occlusion settings (right, 26fps@720p, both on GTX 1070).

ABSTRACT
In this paper we present a scattering-based method to compute
high quality depth of field in real time. Relying on multiple layers
of scene data, our method naturally supports settings with partial
occlusion, an important effect that is often disregarded by real time
approaches. Using well-founded layer-reduction techniques and ef-
ficient mapping to the GPU, our approach out-performs established
approaches with a similar high-quality feature set.

Our proposed algorithm works by collecting a multi-layer image,
which is then directly reduced to only keep hidden fragments close
to discontinuities. Fragments are then further reduced by merging
and then splatted to screen-space tiles. The per-tile information is
then sorted and accumulated in order, yielding an overall approach
that supports partial occlusion as well as properly ordered blending
of the out-of-focus fragments.

Multi-Layer Depth of Field Rendering with Tiled Splatting,
Author’s Version
Final version to be published in PACM CGIT
https://doi.org/10.1145/3203200

1 INTRODUCTION
Defocus blur, originating from lenses with finite extend (such as
camera lenses, or the human eye) is a common effect seen in video
games and movies. Very fast algorithms for computing approxi-
mations of it are well established [Riguer et al. 2003; Sousa 2013;
White and Barré-Brisebois 2011; Zhou et al. 2007]. Even though
some common approximations exhibit systematic error [Demers
2004; Hammon 2007], the forgiving nature of this effect and decades
of research make for plausible results. Still, we believe that efficient,
more robust methods are welcomed by implementors, especially
in the domain of high-quality imaging. Targeting this domain, we
contribute a novel, image-based approach to rendering defocus blur
that shows excellent quality, even for very hard geometric cases,
and that outperforms established methods supporting a similarly
wide feature set.

Our method relies on multiple layers of input data in areas where
those layers will add further information to faithfully represent
geometry hidden by out-of-focus near-field objects. To this end we
compute a partial multi-layer image, the fragments of which we
then further thin-out and merge (based on their distance to sur-
rounding geometry and the size of the circle of confusion) to yield a
manageable data set. Based on this we sort the collected fragments
into screen-space tiles and apply fast, coherent accumulation.

Our work draws on recent advances in graphics research, namely
tiled shading [Harada et al. 2012; Olsson and Assarsson 2011] ap-
plied to compute depth of field [Selgrad et al. 2016] with correct
fragment-ordering, efficient, temporal depth peeling [Mara et al.
2016], discontinuity-based filtering [Segovia et al. 2006; Simmons
and Séquin 2000; Widmer et al. 2016] with detection of areas of
disocclusion [Widmer et al. 2016] and efficient, domain-specific,
reduction of multi-layer data [Lee et al. 2010].

https://doi.org/10.1145/3203200


The specific contribution of our work is the integration of all
those aspects to form a novel, high-quality approach to compute
defocus blur, as well as the optimizations originating from our
depth-of-field use-case such as heavily reducing layering during
rendering and by post-processing of the multi-layer data.

Following a short survey of related work given in Section 2, we
give a high-level overview of our algorithm in Section 3. We then
describe how we generate our partial multi-layer image in Section 4
and how it is processed and traversed to compute images with
depth of field in Section 5. These sections describe our algorithm’s
basic workings, from which we detail how to further reduce the
amount of data that has to be processed in Section 6. In Section 7
we evaluate our method in terms of image quality as well as render
time. We conclude our presentation with Section 8.

2 RELATEDWORK
Depth of field is an effect originating from physical properties of
lenses such as in cameras or the eye. There is a huge body of work
in simulating it, both in offline and real-time contexts. In offline
rendering, it can easily be incorporated into path-tracing based
systems as an additional integration over the lens [Cook et al. 1984].
An alternative is to simply average many separate renderings with
slightly shifted camera positions [Haeberli and Akeley 1990].

Initial work on rendering depth of field proposed the thin-lens
model [Potmesil and Chakravarty 1981]. A thin lens with a given
aperture causes points of a certain distance from the lens to be in
focus and points further away from this focus distance get progres-
sively more blurry. The amount of blur is given by the size of the
circle of confusion (Coc), see Figure 2 for a visualization of the thin
lens and the extent of the Coc.

For real-time rendering there are two principal post-processing
techniques to simulating defocus blur: Scattering depth of field,
first presented by Potmesil and Chakravarty [1981] uses a pinhole-
based image and renders pixels as semi-transparent splats, creating
the blur. For correct accumulation, the splats need to be sorted
by depth and accumulated, which can be challenging with regard
to performance [Demers 2004; Křivánek et al. 2003]. This method
is the basis for rendering defocus blur in point based rendering
systems [Křivánek et al. 2003], on per-pixel layers [Lee et al. 2008]
and in tiled pipelines [Selgrad et al. 2016], each reducing workload
to achieve better performance by either reducing the complexity of
the global sorting problem to discrete layers or introducing small
errors in the image to simplify computations.

Gathering approaches also start with a pinhole image, but then
gather information about neighboring pixels in the area of the
current pixel’s Coc. Such approaches are better suited for modern
graphics hardware [Demers 2004; Riguer et al. 2003; Scheuermann
and Tatarchuk 2004; Sousa 2013; White and Barré-Brisebois 2011].
Naively filtering this area, however, exhibits strong artifacts, such
as intensity leakage (color of in-focus pixels bleeding into the far-
field) and depth discontinuities at edges (near-field blur having
sharp edges at discontinuities to in-focus areas) [Demers 2004;
Hammon 2007] . With more sophisticated filters, e.g. considering
the depths of the pixels contributing to the blur, these artifacts can
be reduced [Zhou et al. 2007], but more nuanced artifacts in the
form of incorrect color accumulation (originating from the lack of
correct depth ordering) can still be observed [Selgrad et al. 2016].

Lens

Focal Plane

Near Field Far Field

Circle of Confusion

Figure 2: The size of the circle of confusion (Coc) goes to zero
at the focal plane and rises with distance from it. As can be
seen, many pixel footprints can overlap the Coc of a single
pixel (especially in the near field).

Recently, methods that combine the two principal techniques,
have emerged [Harada et al. 2012; Jimenez 2014; Olsson and As-
sarsson 2011]. By gathering in a large enough area and then splat-
ting the gathered pixels on this reduced scale, the workload of
global sorting from scattering techniques is heavily reduced and
amenable to parallelization. Further, reducing sorting complexity
can be achieved [Jimenez 2014] (based on depth-partitioning [Lee
et al. 2008]) by separating near and far field in this technique. Note
that recent, fast gather and scatter-as-gather techniques mostly
rely on statistical sampling to reduce workload, which usually
needs additional work to reduce artifacts based on sampling vari-
ance [Jimenez 2014; Sousa 2013; White and Barré-Brisebois 2011].

Most of the post processing methods mentioned so far suffer
from not being able to properly simulate partial occlusion. This
effect is caused by fragments that are not visible from a pinhole
camera image but can become visible due to objects in front of
them becoming blurry and transparent. Schedl and Wimmer [2012]
present one way to simulate this effect by subdividing the scene into
depth layers and then filtering them individually. Mei et al. [2005]
use a camera model with distorted rays that also samples parts
of the scene that are not visible from a pinhole view. Approaches
that base their input on multi-layer images instead of single-layer
pinhole images are also able to circumvent this artifact. Lee et al.’s
algorithms [2009; 2010] use depth-peeling to collect the missing
information and represent layers as height fields to efficiently trace
rays, which, assuming a sufficient amount of samples are taken,
yields excellent results, also for strong near-field blur. Selgrad et
al. [2015] used per-pixel arrays for collection, progressive filtering
and alpha blending to simulate large and near-field blurs.

Multi-layer images can be acquired in a number of different ways.
Depth-peeling [Everitt 2001] uses multiple render passes to gener-
ated successive layers that can become visible by partial occlusion.
The information is implicitly sorted by depth, but using multiple
render calls can be costly. Methods to speed up the approach by
exploiting state of the art GPU features [Liu et al. 2009] or tem-
poral reprojection [Mara et al. 2016] achieve higher performance
results. Another technique collects all fragments of the scene in one
pass in per-pixel linked lists [Yang et al. 2010] or arrays [Selgrad
et al. 2015]. This technique can be very fast compared to depth-
peeling [Hofmann et al. 2017], but the a-priori unbounded memory
requirements and unsorted results pose challenges.

2



3 ALGORITHM OVERVIEW
Our algorithm executes a number of different stages that we group
by the following phases:
Generation The first phase is comprised of two steps, the first of

which is the rendering of a multi-layer image to support par-
tial occlusion. In the second step we limit themulti-layer data
to only keep hidden fragments along depth discontinuities,
as this is where partial occlusion can be observed.

Reduction The second phase of our method further decimates the
multi-layer data by combining fragments from neighboring
pixels if they are out of focus and at similar depth values and
shaded color. The result of this step is a list of fragments (of
various sizes) per 4 × 4 pixel region.

Tiling The next phase then bins these fragments into larger screen-
space tiles (usually 16×16). Due to the highly heterogeneous
lengths of the input lists we apply load-balancing to fully
utilize the GPU.

Accumulation In the final phase we compute blurred output-
image based on our tiled structure. To this end we first sort
the fragments stored in each tile. This allows us to take the
actual order of the fragments into consideration (and not
indiscriminately apply uniform weights) when traversing
the per-tile lists for each pixel to determine the final output
color.

The following sections describe these phases in more detail, starting
with data structure construction (Section 4) and use (Section 5).
These two sections cover our basic pipeline in detail, but without
the reduction phase. We then describe how to further reduce the
number of fragments to obtain manageable per-tile lists (Section 6)
before evaluating our results and comparing them to competing
approaches (Section 7).

4 PARTIAL MULTI-LAYER GENERATION
A key aspect of our method is proper handling of partial occlusion
(see Section 2). Partial occlusion describes that fragments that are
not visible from a pinhole camera can become visible due to objects
in front of them becoming blurry. To support this, we keep multiple
layers of the scene in order to provide the information becoming
relevant due to such disocclusions.

4.1 Depth Peeling with Depth of Field
To generate our partial multi-layer structure, we follow Mara et
al. [2016]. Their method works by multiplying the scene’s primi-
tives in the geometry shader and emitting the same primitive to a
(fixed) number of layers. For each layer the primitive’s z-values are
compared to the reprojected depth of the earlier layer in the previ-
ous frame. Thus, the entire depth peeling step is computed with a
single render-pass by re-using previous frames. As demonstrated
in earlier work [Hofmann et al. 2017; Mara et al. 2016; Widmer et al.
2015], this temporal construction works well in practice.

As observed by Mara et al. [2016], collecting exactly successive
scene layers (as with traditional depth peeling [Everitt 2001]) re-
quires many layers to add significant information in dense regions.
Therefore they propose to only keep fragments during depth peel-
ing that have a certain distance to the previous layer. This distance
parameter, even though quite robust, is scene dependent. In the case

f1 f2

Shadow of f1

Figure 3: Umbra thresholding: Fragment f1 blocks most of
the lens rays on f2.

of depth-peeling for depth of field we can rely on Lee et al.’s [2010]
insights. They showed that using the lens and a fragment at a given
distance, there is a region behind that fragment which cannot be
reached by lens-rays. This can be understood more intuitively when
considering the lens as an area light source and the fragment as an
occluder. In this setup, fragments in the umbra-region are mostly
shadowed and can thus be disregarded without introducing notice-
able error [Lee et al. 2010]. We use this observation as a heuristic to
optimize the per-fragment minimum separation for temporal depth
peeling [Mara et al. 2016]. In the remainder of this paper we will
refer to this threshold as umbra threshold. Note that this threshold
depends on a fragment’s z-value, i.e. it is not a constant. Figure 3
illustrates this per-fragment threshold.

Thus, the combination of Lee et al.’s [2010] observations with
Mara et al.’s [2016] temporal depth peeling can be considered the
state of the art in depth peeling for our specific use-case. It is both
efficient in terms of run time and effective in producing small sets
of fragments per pixel. Its effect on image quality will be evaluated
in Section 6 where we also propose a more aggressive extension.

4.2 Where to keep Multiple Layers
To support partial occlusion for near-field out-of-focus objects in
the general case, a number of layers has to be kept. Only keeping
two layers will work in synthetic cases, but not in general. However,
we note that disocclusion only affects object-silhouettes [Mei et al.
2005] (extended by the blur factor) and incorporate this observation
into our pipeline to reduce the number fragments, see Figure 4. In
the umbra-terminology introduced above, areas of disocclusion are
the penumbra-region of fragments closer to the camera.

To determine for which pixel-locations multi-layer data should
be stored we run a full-screen pass on the first layer computed in
the previous step, resulting in a disocclusion buffer (in the spirit of
Widmer et al. [2016]). To this end we start at all pixels that have
discontinuous edges, i.e. pixels that have neighbors with signifi-
cantly differing depths. We then tag all neighboring pixels in the
respective circle of confusion (Coc) as requiring multi-layer data.
This naturally grows a border into near-field objects which will
become partially transparent by this. Pixels further from a depth-
discontinuity than the radius of the edge’s Coc cannot be part of
disocclusion, the defocus blur only affects the front-most part then.

3



Figure 5: Disocclusion buffer (left) and the first three partial multi-layer images used to compute the image shown in Figure 1,
right. A breakdownof the render-times for the different steps of our algorithm for this view is displayed in Figure 13 (Section 7).

-z

y

Depth discontinuity

(a) -z

y

Circle of Confusion

of this fragment

(b)

-z

y

(c) -z

y

(d)

Figure 4: (a) Side-view of a blue plane (slightly out of focus)
in front of a red sphere (in focus). (b) Circle of confusion
(Coc) for a pixel on the plane, all fragments that would be
rasterized for a standard post processing effect are displayed.
(c) All fragments of the scene, keeping them allows to com-
pute partial occlusion. (d) Only keeping multiple layers of
fragments in the Coc of pixels at discontinuities greatly re-
duced the number of fragments collected. Note how the dis-
continuity (bottom-end of the plane) is dilated by the Coc.

Illustrating this scheme, Figure 4 (a) shows a side-view of a large
blue plane in front of a red sphere. The blue plane is slightly out of
focus and thus a small Coc arises. Figure 4 (b) shows the fragments
generated by standard rasterization, i.e. only the front-most layer. It
also indicates the size of the Coc for one pixel on the blue plane. To
properly manage partial occlusion, earlier work relies on a complete
multi-layer image (c). For the discontinuity detected at the pixel
referenced in (d), however, only fragments in the footprint of its Coc
have to be collected. Figure 4 (d) highlights the pixels for which this
is the case. Note how the area requiring multi-layer data extends
upwards into the blue plane (and also below it). Thus, fragments
from the red sphere are only kept when they are the closest ones
to the viewer (standard z-test, lower three rows) or when they are
in the area tagged for collecting multi-layer data (shaded gray).

Figure 5 shows the disocclusion buffer of the scene shown in
Figure 1 (right). As can be seen, this is a challenging case where
multi-layer data is required for most of the pixels. The figure further
shows the first three (out of five) layers generated to support partial
occlusion.

4.3 Dataflow
We incorporate this process into our temporal pipeline such that
we use the thusly computed multi-layer mask (disocclusion buffer)
in the next frame, i.e. each frame uses the re-projected mask of the
previous one. However, our algorithm can also be run with two
render passes, one to compute the first layer, and one to collect the
other layers after the mask has been computed. We have opted for
the former choice for performance reasons, but choosing the latter
would work as well.

The layered render target used to compute the partial multi-layer
image is then converted to per-pixel arrays holding the layers, in
order. Note that these arrays are allocated to hold the maximal
number of fragments that can be stored, and thus there will be
many instances for which the array is not completely filled. Using a
more compact representation is not beneficial here as the allocated
storage will be re-used by later sorting and merging stages. Note,
however, that the number of layers is fixed and known beforehand,
i.e. we usually render four or five layers and thus can preallocate
without fear of unbounded storage requirements (such as with
per-pixel linked lists).

5 TILING AND ACCUMULATION
Based on the partial multi-layer data computed in the first phase,
proper defocus blur can be computed by splatting the contribu-
tion of all collected fragments (in-order) to all neighboring pixel
locations within their circle of confusion. However, naively doing
so will yield poor performance and is problematic regarding the
correct ordering of fragments during splatting. Therefore, we align
our splatting with a depth of field variant [Selgrad et al. 2016] of
tiled splatting [Harada et al. 2012; Olsson and Assarsson 2011],
which is very similar to tiled particle accumulation [Thomas 2014].
In contrast to tiled depth of field splatting [Selgrad et al. 2016],
our multi-layer setting shows longer lists with highly incoherent
lengths, especially when also allowing for larger blur circles (splat-
ting into 2nd-degree neighbors).

In the followingwewill describe how the tile lists are constructed
from the depth peeled image (Section 5.1), sorted (Section 5.2) and
efficiently traversed with proper blending (Section 5.3).

5.1 Tiling Inhomogeneous Lists
To facilitate efficient computation of the per-pixel blur, we partition
the pixels of the framebuffer into tiles (usually 16×16 pixels). These
tiles are populated by all the fragments within their screen-space
footprint. Furthermore, for each pixel the eight (default choice) sur-
rounding tiles are checked for overlap with the circle of confusion

4



c

tw

A = L(πc2 + 4twc+ t2w)

L = number of layers := 5
A = 8192
tw = 16
→ c ≈ 13.13
→ Cocmax = 13

Figure 6: Limitations on the circle of confusion arising from
shared-memory bitonic sorting (on current hardware tile-
lists can not exceed 8192 fragments). Note that this limit can
be relaxed by sorting tiles exceeding it in global memory.

of this pixel’s fragments. All of those tiles that the fragment’s Coc
overlaps will receive a copy of that fragment. The result of this is
a multiplication of fragments of up to a factor of 9 (see Section 7
for more realistic list sizes) such that each tile has a copy of all the
fragments that can affect the color of one of its encompassed pixels.

The input of this process is the set of per-pixel arrays holding the
partial multi-layer data generated in the first phase. The output is a
set of per-tile arrays containing all the relevant fragments for each
tile. This is easily implemented by conservatively estimating the
number of fragments that will be inserted into each tile by the sum
of fragments stored in the tile’s direct neighbors (or 2nd-degree
neighbors to support lager blur). Filling the arrays is then simply
done by maintaining an atomic counter.

As we keep a partial multi-layer image, it can be expected that
the lengths of the lists that are processed by the same warp in our
GPU implementation vary dramatically. To distribute the workload
more evenly over the individual threads we establish a work-queue
similar to dynamic fetching in ray traversal [Aila and Laine 2009].
To efficiently facilitate this, we compute a indexing structure over
all the pixels of each tile, prior to splatting. This structure simply
compensates for the fact that not all per-pixel arrays are filled to the
maximum allocated limit (see Section 4.2) and provides contiguous
indexing over the tile’s pixels. It can be easily computed by a per-
tile scan of the list lengths and adding one index entry for each
fragment. During splatting this data structure is then used such
that each thread allocates a set of fragments (usually four) at a time
and splats them to the surrounding tiles.

Note that adding pixels only to adjacent tiles effectively limits
the maximum Coc that can be represented with this structure. For
16 × 16 tile lists its radius can not exceed 16 pixels (conservative
from the tile-borders, but see also below). Larger tile sizes are pos-
sible, but our evaluation showed that best performance is achieved
using 16 × 16 tiles. However, the restriction of splatting to the di-
rectly neighboring tiles, only, can be relaxed and thus larger blur is
possible, see Section 7.

5.2 Sorting Tile Lists
The thusly constructed per-tile lists are then sorted by depth. This
allows us to use alpha blending when computing the blurred output
image in the next stage, which results in a higher-quality simulation
of depth of field than when disregarding ordering [Selgrad et al.
2016] (even in the absence of multi-layer data). As sorting can

be very costly for large tile-lists (see Section 7), we implemented
bitonic sorting [Batcher 1968] that works entirely in sharedmemory.
In the following we describe the implications of using this highly
efficient alternative.

Fast Sorting. Our shared-memory bitonic sort is very fast, but
requiring all data to be present in shared memory entails a limit
on the number of fragments that can be processed. On current-
generation GPUs there is only 48 KiB of shared memory available
per block [Nvidia 2017]. We can fully exploit this memory when
sorting 32-bit depth-values together with 16-bit indices. As bitonic
sorting requires power of two sized working sets, we can sort up
to 8192 fragments. Using more aggressive compression, e.g. 19
bits for depth and 13 bits for the index, increases performance by
allowing 3 instead of 2 blocks to run on the same shared multi-
processor [Nvidia 2017] (reducing execution time for this step by
around 35%). However, temporal stability can suffer from this as
z-fighting can occur as a result of the reduced depth-precision.

Going a less aggressive route, we noticed that in most cases
many tile lists are not even close to be filled up to this maximum.
Therefore, we group the lists by upper bounds on their size, in
our implementation the bins are the powers of two from 256 up to
8192. This way many more smaller tiles can be sorted in parallel
by reducing the shared memory restrictions. This reduces sorting
time by around 10% in our test scenes. Allowing a larger blur radius
for those would also be possible, but yield inconsistent results
depending on the tiles’ depth complexities.

Figure 6 shows the splatting setup for a tile with its neighbor-
hood. To ensure consistent splat sizes the circle of confusion of all
fragments in a tile is capped to the maximum one valid across all
tile-pixels. For example, for one of the center pixels of the tile the
Coc could go up to 23 without exceeding the one-ring neighbor-
hood. However, the same distance will exceed the neighborhood
when closer towards the tile-border. Therefore, the maximum ra-
dius of the Coc is set to the tile size. Depending on the number of
layers collected during depth peeling, the radius might further get
reduced by the requirement to sort entirely in shared memory. The
red border in Figure 6 shows the geometry of the tile dilated by
its maximum Coc. In the right part it shows how to compute the
number of pixels encompassed by this region. It can be seen that
with enough shared memory for 8192 elements to sort, and 5 layers
(worst case: fully populated) of fragments per pixel, the maximum
Coc-radius is only 13. Following the same argument for 4 depth
layers results in a maximum radius of 15, which is almost as large
as possible under the neighborhood constraints of tiled splatting as
described above.

Tile Sizes and Coc Radii. The restrictions described so far can be
relaxed by not strictly sticking to worst-case scenarios. In practice,
many tile lists contain only a fraction of the allowed entries and
thus sorting with differently configured shared memory partitions
(to allow sorting more lists in parallel) is possible. For tile lists that
exceed the limit, we extend this grouping scheme to also collect tiles
that have overly long lists and sort these in global memory. As can
be expected, this slows down rendering but prevents errors from
not sorting the full lists. Our tests showed that sorting 2% of the tile
lists in global memory (i.e. for the longest 72 tile lists in Figure 1,
right) sorting time increases by 10%. As shown in Section 7, even for

5



float16 / float16

uint16 / float16

float

uint16 / uint16

red

merge index

depth

green

blue

pos xpos y

Figure 7: Illustration of the data kept for each fragment. Be-
side HDR color and depth information, we keep the screen-
space position to allow fractional positions after merging
and merge-index to ensure consistent merging.

very dense cases of partial occlusion (such as displayed in Figure 1,
right), our method does not have to rely on global sorting at all (also
because of fragment reduction, see Section 6). We can even extend
our scheme to produce large blurs by splatting into 2nd-degree
neighbors, yielding a Coc-radius of up to 32. Section 7 shows that
render-times for even larger blur sizes increase moderately.

5.3 List Traversal
In the final stage of our algorithm we accumulate the fragments
stored in a tile (now including the relevant fragments from neigh-
boring tiles) straightforwardly using alpha blending [Selgrad et al.
2016; Thomas 2014]. Therefore, we traverse each tile with a block of
16 × 16 threads. The fragments of each warp-sized sub-tile (usually
16 × 2) are processed completely coherently, new data is loaded
from the per-tile arrays and stored to shared memory in chunks of
32 elements. Fragment contributions are accumulated for a pixel if
the current fragment’s circle of confusion overlaps this particular
pixel. If so, the contributions are weighted with front-to-back alpha
blending, and upon saturation the respective threads are only active
for loading. Once all pixels of a sub-tile are saturated traversal itself
is terminated.

6 FRAGMENT REDUCTION
From the description of our algorithm in Sections 4 and 5 it is
clear that the number of fragments collected in the first phase has
a dramatic effect on performance. Even more so, when it can be
guaranteed that no more than a certain number of fragments will be
collected per pixel, this can even allow larger blur (see Section 5.2).
Therefore we only accept new fragments during depth peeling
that have a minimum distance to earlier fragments [Mara et al.
2016]. This distance is driven by Lee et al.’s [2010] umbra threshold,
which allows us to retain a blur radius of 13 or 15 pixels, while still
rendering images of high quality with partial occlusion.

The remainder of this section provides details on the second
phase of our algorithm, reduction (Section 6.1), as well as on umbra
merging used in the first two phases (Section 6.2).

6.1 Fragment Merging
The previous sections described our overall algorithm (without
merging of similar fragments in the multi-layer image) to give a
simplified overview of our pipeline. To improve run time, fragment
merging is applied after the partial multi-layer image has been
generated, and prior to tiling. Therefore, similar to the tiling phase,
the input of this phase is a set of per-pixel arrays resulting from
depth peeling. Each array consists of up to a maximum of L layers,

Figure 8: Four fragments thatwill bemerged (left). Resulting
fragment with new position and Coc-radius (center). Note
that there is some overestimation where the individual frag-
ments’ Cocs do not overlap (right, shown in red).

usually four or five, where the array’s allocated size is the maximum
length allowed (follows from depth peeling).

We hierarchically merge fragments in a two step process, each
step collapsing a 2 × 2 region of pixels, so that after merging the
image size is reduced to one fourth in each direction. During this
step, we always keep the front-most fragments from each pixel
of this 2 × 2 region and compare their depths. If the depth values
are similar we also check for similarity in shaded color. When the
colors are also similar and the fragments are not very close to the
focal plane, then they are combined and emitted as a single, larger
fragment. Figure 7 illustrates the data-layout of a fragment. It shows
that we also keep a (screen-space) position, which is with respect
to the full-resolution image. This is required for determining if a
fragment (with its circle of confusion) overlaps with a given pixel
in the final accumulation step (see Section 5.3). The position is
changed when fragments are merged to move the center of the new
fragment to the center of themerge-region. Note that we onlymerge
when all four fragments for the 2 × 2 pixel range match (i.e. we
do not generate transparent fragments). We then set the resulting
fragment’s Coc to the union of all the individual fragments’ Cocs
relative to this new position. Fragments that are not merged are
still stored in the same output-lists, but will not be considered for
merging in the next step and their position and Coc are kept as is.
To ensure that they are not merged by the next merging step, their
merge-id is also encoded.

Figure 8 illustrates the input and output of a single fragment-
merging operation. The four fragments to the left have similar
depth values, and consequently similar Coc-radii. The merged frag-
ment (center) is assigned a Coc-radius (r ) that encompasses all the
fragments’ Cocs (with radius ri ) and its color is the average color
of the fragments. This step incurs overestimation (right) but it is
usually minor due to the similar Coc-radii. A closer approximation
could be attained when taking an average that takes the circular na-
ture into account, e.g. r =

√
r12 + r22 + r32 + r42, but since we only

store depth values (and reconstruct a fragment’s Coc on demand),
merging to the largest circle proved to be more robust in practice.

Note that, in contrast to multi-layer filtering [Selgrad et al. 2015],
simply averaging the colors is generally valid as we never merge
fragments originating from within the same pixel. Similar depths
inside a single pixel are even ruled out by umbra thresholding (on
the depth peeled level, see also Section 6.2). Regarding multi-layer
filtering, note that we do not compute as many levels and, more
importantly, do not suffer from approximation errors as a result of
overly aggressive down-filtering.

6



Merged Fragment

Figure 9: Umbra aware merging: When amerged fragment’s
size exceeds the lens aperture the shadow will diverge, all
fragments behind it will be shadowed.

6.2 Umbra Aware Merging
Umbra thresholding as applied during depth-peeling to skip over
fragments that can only be reached by a very small fraction of
the lens rays can also be applied during merging. To this end, we
always keep the last-merged fragment, compute its umbra-length
and skip successive fragments for the input lists as long as they
are still considered to be in shadow. This is especially effective
in reducing list lengths as the larger fragments, naturally, have
larger umbra-extent. This umbra aware merging is thus applied
when merging fragments that will have a footprint of 2 × 2 as well
as when generating fragments of 4 × 4. Especially in the latter
case, there is a chance that far-field fragments will become larger
than the lens’ aperture and thus cast an infinite shadow, effectively
terminating the merging-process and thus trimming lists even more
strongly (Figure 9 shows an accentuated example).

The reason for this is easily seen by an example. Consider a
camera of 35mm focal length at f /11. Then the aperture is 3.18mm
(similar to the human eye’s [Winn et al. 1994]) and the field of
view is 54.4 degrees [Claff 2016]. With this, the size of a fragment
at 720p matches the aperture at 15.8 meters, a fragment that was
merged from 4 × 4 fragments reaches the aperture’s size already at
3.9 meters. For Figure 1 (left) the aperture is 0.4 units, for Figure 1
(right) it is 1.6, at 720p and fovy of 70 degrees the fragment sizes
catch up at 206 and 822 units, respectively (for a scene extent of
5000 units).

7 EVALUATION
In this section we show how ourmethod performs on real-world use
cases, describe the impact of certain parameter choices and compare
our results with competing approaches. We will first compare our
render times to classical, post-processing based approaches [Riguer
et al. 2003; Selgrad et al. 2016] and an established approach that uses
screen-space ray traversal and that supports partial occlusion [Lee
et al. 2009, 2010]. We then describe the results of parameter choices
and optimizations of our method and finally evaluate the quality
of the images computed the our approach and the aforementioned
methods.

Performance. Unless otherwise mentioned, our method is con-
figured to compute five layers using temporal depth peeling, uses
16 × 16 screen-space tiles and splats at most into 2nd degree neigh-
boring tiles (i.e. the Coc is limited to radius 32 at most). Sorting
is allowed to fall back to global memory for tiles with more than

Method Render Merge Splat Sort Apply Overall

Figure 1, left
Gathering 7.09 2.09 9.18
Tiled Splatting 7.09 0.88 1.80 5.22 14.99
RT, 16sppx 13.76 13.65 27.41
RT, 32sppx 13.76 28.82 42.58
RT, 64sppx 13.76 58.90 72.66
Ours 13.21 1.19 1.42 3.79 4.52 24.13

Figure 10
Gathering 0.80 3.80 4.60
Tiled Splatting 0.80 1.16 2.08 8.56 12.60
RT, 16sppx 2.95 12.20 15.15
RT, 32sppx 2.95 25.27 28.22
RT, 64sppx 2.95 51.37 54.32
Ours 2.71 1.09 1.07 2.66 3.34 10.87

Figure 11
Gathering 0.14 2.60 2.74
Tiled Splatting 0.14 0.91 2.16 5.89 9.10
RT, 16sppx 0.28 2.00 2.28
RT, 32sppx 0.28 3.95 4.23
RT, 64sppx 0.28 7.91 8.19
Ours 0.39 0.53 0.62 0.87 1.01 3.42

Table 1: Times (in ms) for two single-layer post-processing
methods, gathering [Riguer et al. 2003] and tiled splat-
ting [Selgrad et al. 2016], and three settings of Lee et
al.’s [2010] lens ray tracing compared to our method (for
three scenes as indicated in the table). The apply column
refers to the tracing times for the ray tracing implementa-
tions.

Figure 10: A view into Sponza that shows partial occlusion
and high depth complexity (along the columns). See Table 1
(middle) for detailed render times and Figure 12 (bottom) for
information on tile list lengths.

8192 elements. All screenshots presented are rendered with this
configuration as well (at 720p on a GTX 1070).

Table 1 lists detailed render times for a high-performance gather-
ing approach [Riguer et al. 2003], single layer tiled splatting [Selgrad
et al. 2016] and for high-quality depth-of-field ray tracing [Lee et al.
2010] that also supports partial occlusion. As can be expected, the
single-layer methods are significantly faster than multi-layer bases
approaches, however, they are not able to produce plausible blur
in partial occlusion cases, as will be illustrated below. To ensure
a fair comparison we use our temporal depth peeling with Lee et

7



Figure 11: A very simple setup consisting of a white plane
in the far field, a red sphere in focus and a small blue quad
in the near field. (Right) The Disocclusion-buffer illustrat-
ing the simplicity: Only the white areas have more than one
layer. See Table 1 (bottom) for detailed render times.

al.’s [2010] method, too (using five layers, N-buffers with 1/4th
resolution and jittered tracing). Our rendering times (first column
in Table 1) are still a little lower in the non-trivial scenes, as our
method also uses the disocclusion-buffer and consequently shades
fewer fragments. Disocclusion-buffer generation is also contained
in the ‘render’ column. Overall, our method performs as well as
ray tracing 16 samples per pixel. Larger sample counts (as required
for noise-free images, see below) take much more time than us-
ing our method. With a very simple setup, as seen in Figure 11,
our method’s performance is much closer to ray tracing with 32
samples. This is because Lee et al.’s [2010] method benefits from a
scene’s low depth range, as it uses a N-buffer for reducing ray trac-
ing times. In extreme cases, e.g. of a scene containing large depth
differences in the near field and in close screen-space proximity,
such as with the railing and the courtyard in Figure 1 (right), the
N-buffer does not prove to be very effective, and consequently its
utility diminishes in such cases.

Parameters. One of the most influential parameters regarding
both performance and possible blur-size is the maximum radius
of the Coc that is allowed. In Section 5.2 we showed that, under
worst-case assumptions, the radius is limited to 13 pixels. However,
the limit on the tile-list lengths is usually not reached, even for
setups with very large areas of partial occlusion and high depth-
complexity. Figure 12 shows two histograms, one for the image
shown in Figure 1 (right), a challenging setup, and one for the
simpler setup in Sponza, displayed in Figure 10. This suggests that
larger Coc-values are indeed possible, and even if a few individual
tiles exceed the limit, they can still be sorted in global memory with-
out significant impact on run time (see Section 5.2 and Figure 12).
Figure 13 exemplifies this by showing render times for the image
displayed in Figure 1, right. It shows that much larger blur sizes
are possible (global sorting was not necessary in any case) and how
this impacts performance. The two noticeable steps from radius 15
to 17 and from 31 to 33 are where we have to start splatting into
the 2-ring and 3-ring, respectively, with our default 16 × 16 tiles.
Note that the time to generate the multi-layer image also increases
with the maximum Coc. This is because the larger blur is reflected
in the disocclusion buffer and thus causes more pixels to collect
multi-layer data in the first place.

The shared-memory sorting in the first column of Figure 13 is
4.3 ms. When we instead sort in global memory the sorting time
increases to 18.9 ms, making the whole algorithm impractical. Thus
we determine that sorting in shared memory is essential. As the
evaluation of different blur sizes and tile-list lengths (see Figures 13

0

50

100

150

O
cc
u
ra
n
ce
s

1000 2000 3000 4000 5000
Tile List Length

0

200

400

O
cc
u
ra
n
ce
s

1000 2000 3000
Tile List Length

Figure 12: Histogram of the tile-list lengths for the scenes
shown in Figure 1, right (top), and Figure 10 (bottom). Note
that even the former, a very hard case with very strong par-
tial occlusion and layering (see also Figure 5), does not ex-
ceed the shared-memory sorting limit.

5

10

15

20

25

30

35

40

45

13 15 17 19 21 23 25 27 29 31 33 35

ML-Gen Merge Splat Sort Accum

Figure 13: Different upper bounds on the circle of confusion
result in longer tile lists and consequently decreasing per-
formance. Render-times (in ms) for the scenes shown in Fig-
ure 1, right (there with r = 29): a very challenging setup with
considerable partial occlusion. Figure 5 shows the disocclu-
sion buffer (left) and three of the five layers used to compute
the final image. Computation is done with our algorithm’s
standard configuration.

5

10

15

20

25

30

35

40

tw =16 tw =24 tw =32 tw =16 tw =24 tw =32 tw =16 tw =24 tw =32

ML-Gen Merge Splat Sort Accum

Figure 14: Run time (in ms) for using different tile-sizes
(tw × tw ) on the scene shown in Figure 1, right. The left part
shows times for Coc radius r = 15, the middle for r = 23, the
right part for r = 31. Note that tw = 16 can also be found in
Figure 13 and that, for large blur sizes, increased tile sizes
can be beneficial.

8



Gathering [Riguer et al. 2003] Tiled Splatting [Selgrad et al. 2016] Ours

Lee et al. [2010] with 16 samples Lee et al. [2010] with 32 samples Lee et al. [2010] with 64 samples

Figure 15: Quality comparison of different DOF-algorithms. Gathering shows washed-out areas and far-field leaking in blurry
near field regions. Tiled splatting keeps better track of the ordering, but overly darkens interior areas. Our method produces
proper partial occlusion. In contrast to the ray tracing methods (bottom row) it can be seen that splatting and alpha accumu-
lation result in enlarged borders due to saturation. Note how with the ray tracing methods, even at 64 samples there is still
considerable noise.

and 12, respectively) shows, this is not a severe limitation as large
Coc-values can be managed without falling back to global sorting at
all. Figure 14 shows run times for three different tile sizes, namely
16× 16, 24× 24 and 32× 32. It shows that our default of 16 performs
well for large and medium blur sizes.

Image Quality. Figure 15 displays renderings for the viewpoint
shown in Figure 1 (left) for the different methods evaluated with
regard to performance. It exemplifies that, in scenarios with partial
occlusion, the single-layer methods (gathering [Riguer et al. 2003]
and tiled splatting [Selgrad et al. 2016]) clearly show their limi-
tations. They are very fast and provide high quality when blur is
mostly visible in the far-field, but are not adept for this use-case. Ray
tracing methods [Lee et al. 2010] generate excellent, high-quality re-
sults, but, as shown above, take more computation time. Even with

64 samples per pixel, there is still noticeable noise with strongly
defocused areas and for smaller highlights. Our approach resides
in-between: performance is closer to traditional, post-processing
based methods, while image quality is much closer to ray tracing
based images.

We note, however, that objects’ outwards-blur is overestimated,
as can be seen in Figure 15. This is a common artifact due to splatting
based approaches [Jimenez 2014]. Especially with multiple layers
of data the alpha accumulation saturates earlier. With ray tracing
methods this is not the case as different rays can simply be averaged.
When traversing lists and alpha blending in order this is not a simple
as it is not clearly determined if any given fragment could be hit
directly by a lens ray. However, even with slightly overestimated
borders our results look much better than earlier, fast methods and
at only a fraction of the cost of using ray tracing [Lee et al. 2010].

9



8 CONCLUSION
With this paper we have presented a novel depth of field rendering
approach that runs in real-time on current generation graphics
hardware, even for large scenes in challenging setups. While it runs
at more than twice the render time required by the fastest gathering-
based algorithms it can handle cases that such approaches system-
atically fail at. Competing approaches that solve the same issues are
often ray tracing based and require a multiple of our render times
to converge to images with low-enough noise. With our method
we trade rendering noise for some overestimation on the border
of out-of-focus objects, making them appear less thin, while still
providing proper, order-correctly blended partial occlusion.

We believe that our approach strikes a promising compromise
between noise-free results and real-time post-processing rendering
performance.

REFERENCES
Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of Ray Traversal on

GPUs. In Proceedings of the Conference on High Performance Graphics 2009 (HPG
’09). ACM, New York, NY, USA, 145–149.

Kenneth E. Batcher. 1968. Sorting Networks and their Applications. In Proceedings of
the April 30–May 2, 1968, spring joint computer conference. ACM, 307–314.

Bill Claff. 2016. FOV Tables: Field-of-view of lenses by focal length.
https://www.nikonians.org/reviews/fov-tables. (2016). Accessed on 15 Dec, 2017.

Robert L. Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed Ray Tracing.
In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’84). ACM, New York, NY, USA, 137–145.

Joe Demers. 2004. Depth of Field: A Survey of Techniques. In GPU Gems, Randima
Fernando (Ed.). Pearson Higher Education.

Cass Everitt. 2001. Interactive Order-Independent Transparency. Technical Report.
NVIDIA Corporation.

Paul Haeberli and Kurt Akeley. 1990. The Accumulation Buffer: Hardware Support for
High-quality Rendering. In Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’90). ACM, New York, NY, USA,
309–318.

Earl Hammon. 2007. Practical Post-Process Depth of Field. In GPU Gems III, Hubert
Nguyen (Ed.). Addison-Wesley.

Takahiro Harada, Jay McKee, and Jason C. Yang. 2012. Forward+: Bringing Deferred
Lighting to the Next Level. In Eurographics 2012 - Short Papers Proceedings, Cagliari,
Italy, May 13-18, 2012. 5–8.

Nikolai Hofmann, Phillip Bogendörfer, Marc Stamminger, and Kai Selgrad. 2017. Hier-
archical Multi-layer Screen-space Ray Tracing. In Proceedings of High Performance
Graphics (HPG ’17). ACM, New York, NY, USA, Article 18, 10 pages.

Jorge Jimenez. 2014. Next Generation Post Processing in Call of Duty Advanced
Warfare. (July 2014). Siggraph 2014.

Jaroslav Křivánek, Jiří Žára, and Kadi Bouatouch. 2003. Fast Depth of Field Rendering
with Surface Splatting. In Computer Graphics International, 2003. Proceedings. IEEE,
196–201.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2009. Depth-of-field Rendering
with Multiview Synthesis. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 28, 5
(2009).

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2010. Real-time Lens Blur Effects
and Focus Control. ACM Trans. Graph. 29, 4, Article 65 (July 2010), 7 pages.

Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2008. Real-Time Depth-
of-Field Rendering Using Point Splatting on Per-Pixel Layers. Computer Graphics
Forum (2008).

Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. 2009. Efficient Depth
Peeling via Bucket Sort. In Proceedings of the Conference on High Performance
Graphics 2009 (HPG ’09). ACM, New York, NY, USA, 51–57.

Michael Mara, Morgan McGuire, Derek Nowrouzezahrai, and David Luebke. 2016.
Deep G-Buffers for Stable Global Illumination Approximation. In HPG. 11.

Chunhui Mei, Voicu Popescu, and Elisha Sacks. 2005. The Occlusion Camera. Computer
Graphics Forum (2005).

Nvidia. 2017. Tuning CUDA Applications for Pascal. http://docs.nvidia.com/-
cuda/pascal-tuning-guide/index.html#shared-memory. (2017).

Ola Olsson and Ulf Assarsson. 2011. Tiled Shading. Journal of Graphics, GPU, and
Game Tools 15, 4 (2011), 235–251.

Michael Potmesil and Indranil Chakravarty. 1981. A Lens and Aperture Camera Model
for Synthetic Image Generation. In Proceedings of the 8th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’81). ACM, New York,
NY, USA, 297–305.

Guennadi Riguer, Natalya Tatarchuk, and John R. Isidoro. 2003. Real-Time Depth of
Field Simulation. In ShaderX2: Shader Programming Tips and Tricks with DirectX
9.0, Wolfgang Engel (Ed.). Wordware, Plano, Texas.

D Schedl and M Wimmer. 2012. A Layered Depth-of-Field Method for Solving Partial
Occlusion. Journal of WSCG 20, 3 (2012), 239–246.

Thorsten Scheuermann and Natalya Tatarchuk. 2004. Improved Depth of Field Render-
ing. In ShaderX3: Advanced Rendering with DirectX and OpenGL (Shaderx Series),
Wolfgang Engel (Ed.). Charles River Media, Inc., Rockland, MA, USA, Chapter
Advanced Depth-of-Field Rendering.

Benjamin Segovia, Jean Claude Iehl, Richard Mitanchey, and Bernard Péroche. 2006.
Non-interleaved Deferred Shading of Interleaved Sample Patterns. In Graphics
Hardware, Marc Olano and Philipp Slusallek (Eds.). The Eurographics Association.

Kai Selgrad, Linus Franke, and Marc Stamminger. 2016. Tiled Depth of Field Splat-
ting. In EG 2016 - Posters, Luis Gonzaga Magalhaes and Rafal Mantiuk (Eds.). The
Eurographics Association.

Kai Selgrad, Christian Reintges, Dominik Penk, Pascal Wagner, and Marc Stamminger.
2015. Real-time Depth of Field Using Multi-layer Filtering. In Proceedings of the
19th Symposium on Interactive 3D Graphics and Games (i3D ’15). ACM, New York,
NY, USA, 121–127.

Maryann Simmons and Carlo H. Séquin. 2000. Tapestry: A Dynamic Mesh-based Display
Representation for Interactive Rendering. Springer Vienna, Vienna, 329–340.

Tiago Sousa. 2013. Graphic Gems - Cry Engine 3. (Aug. 2013). Siggraph 2013.
Gareth Thomas. 2014. Compute-Based GPU Particle Systems. (2014). GDC’14.
John White and Colin Barré-Brisebois. 2011. More Performance! Five Rendering Ideas

from Battlefield 3 and Need For Speed: The Run. (Aug. 2011). Siggraph 2011.
Sven Widmer, Dawid Pajak, A. Schulz, Kari Pulli, Jan Kautz, Michael Goesele, and

David Luebke. 2015. An Adaptive Acceleration Structure for Screen-space Ray
Tracing. In Proceedings of the 7th Conference on High-Performance Graphics (HPG
’15). ACM, New York, NY, USA, 67–76.

Sven Widmer, Dominik Wodniok, Daniel Thul, Stefan Guthe, and Michael Goesele.
2016. Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects. Computer Graphics Forum (2016).

Barry Winn, David Whitaker, David B Elliott, and Nicholas J Phillips. 1994. Fac-
tors affecting light-adapted pupil size in normal human subjects. Investigative
Ophthalmology & Visual Science 35, 3 (1994), 1132.

Jason C Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz. 2010. Real-Time
Concurrent Linked List Construction on the GPU. Computer Graphics Forum (Proc.
EG Symposium on Rendering) 29, 4 (2010), 1297–1304.

Tianshu Zhou, Jim X. Chen, and Mark Pullen. 2007. Accurate Depth of Field Simulation
in Real Time. Computer Graphics Forum (2007).

10


	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm Overview
	4 Partial Multi-Layer Generation
	4.1 Depth Peeling with Depth of Field
	4.2 Where to keep Multiple Layers
	4.3 Dataflow

	5 Tiling and Accumulation
	5.1 Tiling Inhomogeneous Lists
	5.2 Sorting Tile Lists
	5.3 List Traversal

	6 Fragment Reduction
	6.1 Fragment Merging
	6.2 Umbra Aware Merging

	7 Evaluation
	8 Conclusion
	References

