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ABSTRACT
In this paper we describe and evaluate an implementation of CPU-
style SIMD ray traversal on the GPU. We show how spreading
moderately wide BVHs (up to a branching factor of eight) across
multiple threads in a warp can improve performance while not
requiring expensive pre-processing. �e presented ray-traversal
method exhibits improved traversal performance especially for
increasingly incoherent rays.
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1 INTRODUCTION
In this paper we propose a simple extension of state-of-the-art GPU
ray traversal [Aila et al. 2012] that requires only minor changes to
the underlying data structures and shows signi�cantly improved
performance for incoherent rays.

Ray traversal performance using acceleration structures such as
BVHs and kd-trees is an excessively researched �eld. Yet there is
still a consistent stream of improvements by closely mapping ray
traversal to the underlying hardware [Aila et al. 2012; Barringer
and Akenine-Möller 2014; Benthin et al. 2015; Gunther et al. 2007;
Guthe 2014; Wald et al. 2014] and also by employing e�cient com-
pression [Ylitie et al. 2017]. �e method we propose in this paper is
classical in that it tackles raw traversal speed and does not consider
hierarchy generation or compression.

�e main proposition of our method is to use the GPU’s warps
in a more traditional SIMD-scheme [Dammertz et al. 2008; Ernst
and Greiner 2008] by spreading BVH traversal across multiple lanes
(spanning virtual sub-warp SIMD-registers).
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2 RELATEDWORK
�e work of Aila et al. [2009; 2012] is the de-facto reference in GPU
ray traversal. Many successive works rely on their �ndings and im-
prove upon them by adding features or hardware optimizations. For
example, Guthe [2014] incorporated a 4-wide BVH and improved
incoherent performance by up to 20% (on the Kepler and the Fermi
architecture), while Ylitie et al. [2017] presented a compressed 8-
wide BVH that improves incoherent performance by up to a factor
of 3.3 (on the Maxwell and Pascal architecture).

Wide BVHs. Ray traversal using wide BVHs is common with
CPU SIMD ray traversal [Christensen et al. 2006; Dammertz et al.
2008; Ernst and Greiner 2008]. Here, multiple bounding volumes
are tested simultaneously with single rays without the need for
using ray packets [Benthin et al. 2007; Gunther et al. 2007].

A 4-wide BVH in combination with a ray-direction ordered tra-
versal utilizing SIMD was proposed by Dammertz et al. [2008] as
well as by Ernst and Greiner [2008]. Ray-direction ordered pro-
cessing is a heuristic that does not necessarily process the scene’s
bounding volumes in a strict front-to-back order, to save on sorting
time. In contrast, Wald et. al. [2008] endorse a strict front-to-back
order for their SIMD traversal of 16-wide BVHs, which requires
sorting of intersections during traversal.

While sorting is trivial for binary BVHs, sorting net-
works [Batcher 1968] can be applied for higher branching factors
(on the CPU this is used, e.g., in Embree [Wald et al. 2014]). On the
GPU sorting networks can be implemented very e�ciently with
Cuda’s shu�e instructions [Demouth 2013].

Wide BVHs on GPUs. While all these approaches are tailored
for optimal SIMD utilization with single rays on the CPU, none
of them are speci�cally targeted at, nor optimized for GPUs. Aila
and Laine [2009] mentioned a GPU adaptation, but dismissed fur-
ther analysis in their paper due to generally lacking performance.
However, in subsequent work [Aila and Karras 2010] they stated
that such a direction might still be promising, but did not follow it.
Consequently, BVHs are commonly processed on the GPU on indi-
vidual lanes, regardless of their branching factor [Guthe 2014; Ylitie
et al. 2017]. To the best of our knowledge, our presentation is the
�rst one to follow through on this direction. However, Binder and
Keller [2015] applied a related but distinct approach that handles
individual world-space components with separate threads.

BVH Construction. Starting with an e�cient binary BVH [Stich
et al. 2009], a similarly e�cient wide BVH can be constructed e�-
ciently by pulling up individual nodes to create a BVH of a speci�c
width [Wald et al. 2008]. Similarly, fast construction methods for
binary BVHs [Karras 2012; Lauterbach et al. 2009; Selgrad et al.
2015] can be turned into e�cient methods for wide BVHs in the
same way.
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3 SIMD RAY TRAVERSAL ON THE GPU
�e foundation of our approach is teaming multiple lanes of a warp
and le�ing them traverse the BVH together for one single ray. �is
concept mimics a regular SIMD-based BVH traversal known from
methods utilizing SSE and AVX extension on the CPU [Dammertz
et al. 2008; Ernst and Greiner 2008; Wald et al. 2014]. But in con-
trast to CPUs, switching between vector instruction (e.g. parallel
intersection tests) and scalar instruction (e.g. stack management) is
not easily (or even e�ciently) possible on GPUs. In our case, some
operations (e.g. loading, storing, and stack management) have to
be handled individually and at times redundantly on each lane.
�erefore, we supply each lane with its own copy of the ray data,
nearest hit information, and stack pointer. However, the stack itself
resides in shared memory and thus is not redundant.

BVH Construction. We start the construction of our acceleration
structure with a regular binary BVH. �ere are no limits to the
construction of this BVH, except that we strive for the number of
leaf primitives to match the width of our target BVH, i.e. 2, 4, or
8 elements, similarly to CPU implementations [Ernst and Greiner
2008]. In our case, since we added our method to the code published
by Aila et al. [2012], we compute high-quality SBVH [Stich et al.
2009]. For the construction of our 4-wide BVHs, we apply the
method described by Guthe [2014], which aims at reducing the
overall amount of inner nodes by eliminating speci�c leaf nodes �rst.
For our 8-wide BVHs, we �rst pull up child nodes with the largest
surface area without further adjustments [Wald et al. 2008]. Both
methods eliminate nodes by integrating them into their parents
until the respective parent node is saturated (i.e. fully populated).
�is process is repeated on every remaining child node of such a
saturated parent until each BVH level has been processed.

Node Layout. For all our BVHs, we slightly adjust the node layout
(from Aila et al. [2012]) in order to improve coalesced memory
accesses. �e original implementation loads two bounding boxes
and two child indices at once. Each thread individually fetches four
Vec4 elements and both child indices are stored in the last Vec4
element:

int i = node_index * 4;

nodes[i+0] = vec4(box1.min.x , box1.max.x , box1.min.y , box1.max.y );

nodes[i+1] = vec4(box2.min.x , box2.max.x , box2.min.y , box2.max.y );

nodes[i+2] = vec4(box1.min.z , box1.max.z , box2.min.z , box2.max.z );

nodes[i+3] = vec4(child1.idx , child2.idx , 0 , 0 );

In our version, nodes are individually loaded in parts by multiple
adjacent threads. �erefore, it is bene�cial to separate individual
bounding volumes and child indices. In case of a binary BVH, the
following layout allows coalesced memory access to particular Vec4
elements for adjacent threads by applying an o�set of 1:

int i = node_index * 4;

nodes[i+0] = vec4(box1.min.x , box1.max.x , box1.min.y , box1.max.y );

nodes[i+1] = vec4(box2.min.x , box2.max.x , box2.min.y , box2.max.y );

nodes[i+2] = vec4(box1.min.z , box1.max.z , child1.idx , 0 );

nodes[i+3] = vec4(box2.min.z , box2.max.z , child2.idx , 0 );

A corresponding layout is used for our 4- and 8-wide BVHs. �e
�rst half of a node always consists of the x and y components of
its bounding volumes, followed by the second half containing their
corresponding z components and child indices.

�read Organization. We apply a block width of 32 according to
the warp size of the Pascal architecture. �e block height is limited
to 2 in order to maximize the amount of shared memory available
exclusively for each group of threads and our kernel launch con-
�guration aims to populate each streaming multiprocessor with 64
active warps.

�reads are organized in groups (corresponding to CPU SIMD
registers) of 2, 4, or 8 elements, which is applied manually on top
of the block con�guration. �e group size depends on the width of
the processed BVH, while each thread is aware of its group and its
o�set within its group. �e thread group is trivially computed by
dividing the lane index by the current group size (the local thread
o�set within the group is similarly obtained):
uint lane_group = lane / 4; // for groups of 4 threads

uint lane_offset = lane % 4; // for groups of 4 threads

In addition, each group has its own group mask, where the cor-
responding number of group members regarding their position
within the warp is set to 1. Again, the mask is trivially computed
with the lane index (e.g for groups of 4):
uint group_mask = 0x0000000f << (lane & 0xfffffffc );

Ray Management. �e presented traversal scheme is built upon
Persistent �reads [Aila and Laine 2009]. Our ray pool implementa-
tion is similar to the original method’s, which uses a global counter
to track processed rays, but in contrast to the original, we do not
reload rays dynamically if the warp utilization drops below a thresh-
old. We observed a general reduction in performance when we
utilize dynamic reloading, and therefore decided against it. In ad-
dition, omi�ing dynamic fetch removes the need to identify the
number of terminated threads and enables fetching a constant num-
ber of rays in each round.
if (lane == 0)

ray_idx = atomicAdd(g_warpCounter , num_groups );

ray_idx = __shfl(ray_idx , 0) + my_group;

As depicted, lane 0 of each warp is utilized for incrementing
the global ray counter by the number of thread groups. Following
the atomic increment, the initial ray index is distributed to all
threads, all of which then apply an o�set corresponding with their
group. A�erwards, all threads of the same group load the same
ray data during traversal initialization. Loading rays only once
and distributing them among threads was generally slower than
duplicated loading.

Traversal. �e traversal can be classi�ed as if-if -based [Aila and
Laine 2009]. In each iteration, a node index is fetched from the
stack. Based on that index, either a box-intersection or a triangle-
hit test is performed. We do not incorporate a while-while setup,
since it resulted in slower traversal speed than the straight-forward
approach.

�e traversal stack resides entirely in shared memory and gets
initialized by lane 0 with the root node prior traversal. During
traversal, each thread of a group pops the same index from the
stack. Yet adjacent threads load adjacent node data from global
memory by applying their relative position within the group as an
o�set, where each node-data block represents a single bounding box
and an index to a child node. �is access pa�ern heavily depends
on the node layout described ealier:
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int curr_idx = stack[lane_group ][ stack_pointer --];

vec4 xy = nodes[curr_idx + lane_offset ];

vec4 zi = nodes[curr_idx + 2 + lane_offset ];

Triangle intersection is handled similarly by each thread apply-
ing an o�set and loading one single triangle from global memory.
Consequently, each thread tests only one bounding box or one
single triangle for intersections in each iteration.

Hit Detection. �e traversal of a BVH with grouped threads re-
quires the distribution of speci�c information among group mem-
bers. An essential part is detecting if all group members missed
their nodes. If that is the case, processing the current node can be
aborted and the traversal can continue with the next iteration.

We apply the ballot voting function to distribute hit information
within a warp and popc to count the number of hits.
bool hit = intersect_box(xy, zi, dist);

unsigned int warp_vote = __ballot(hit);

unsigned int group_hits = __popc(warp_vote & group_mask );

if (group_hits == 0) continue;

stack_pointer += group_hits;

By masking the global warp-wide vote with the thread’s group
mask, we can count the valid hit occurrences in each thread and
properly increment the thread’s stack pointer.

Intersection Sorting. Implementing a strict front-to-back traversal
requires sorting of intersected nodes by their hit-distances. We
adapted a bitonic sorting algorithm tailored for Cuda [Demouth
2013] to sort indices and distances:
void swap(float& dist , int& index , uint mask , uint dir){

float shfl_dist = __shfl_xor(dist , mask);

int shfl_index = __shfl_xor(index , mask);

bool swp = dist != shfl_dist && dist > shfl_dist == dir;

index = swp ? index : shfl_index;

dist = swp ? dist : shfl_dist;

}

�is allows us to sort child-indices of, e.g., a 4-wide group by ap-
plying only three swap operations:
int child_index = zi.z // index of nodes 's child

float dist = FLT_MAX;

bool hit = intersect_box(xy, zi, dist);

dist = hit ? dist : FLT_MAX;

swap(dist , child_index , bfe(lane , 1) ˆ bfe(lane , 0));

swap(dist , child_index , bfe(lane , 1));

swap(dist , child_index , bfe(lane , 0));

// bfe: bit field extract

In case of an invalid hit, the distance value is set to a sentinel
value to ensure a valid ordering and to distinguish valid hits from
invalid ones a�er the sorting step. A�er this, each thread contains
an index to be used for one of the next iterations, in ascending order.
Indices of missed nodes are kept by threads with o�sets higher
than the number of valid hits. Since the stack pointer was already
increased by the number of hits, the stack entries for the next
iteration can be stored directly in the proper position by applying
the threads’ local o�sets:
if (dist < FLT_MAX)

stack[lane_group ][ stack_pointer - lane_offset] = child_index;

�e last important aspect is identifying the closest triangle in-
tersection. We apply an adapted reduction [Demouth 2013] for
distributing triangle hit information within a group.

#pragma unroll

for (int mask = 2; mask > 0; mask >>=1) {

float shfl_dist = __shfl_xor(dist , mask);

int shfl_addr = __shfl_xor(tri_addr , mask);

tri_addr = shfl_dist < dist ? shfl_addr : tri_addr;

dist = fminf(dist , shfl_dist );

}

�e �nal ray traversal results are stored by the �rst member of each
thread group at the end of the traversal.

4 EVALUATION
We compare our method with Aila et al.’s [2012] original kernels
for the Kepler architecture and Guthe’s [Guthe 2014] adaption for
4-wide BVHs. In order to get comparable results, we extended the
publicly available source code1 with our method and additionally
used Guthe’s implementation for reference. Our implementation is
publicly available online2. All our measurements, shown in Image 1,
were taken on an nVidia GTX 1070 graphics card and all kernel
code was compiled utilizing Cuda 9.1. A possible disparity between
our measurements and the results found in the corresponding pub-
lications, may originate from the di�erent hardware and so�ware
con�guration we use and the fact, that we do not apply sorting on
di�use rays in any of our measurements and compared methods.

Ray Types and Models. We considered primary and increasingly
incoherent di�use rays in our evaluation. Primary rays were gener-
ated and measured for multiple view point throughout the bench-
mark. We measured rays up to the eighth bounce and show results
for the �rst bounce (di�use/1) and eighth bounce (di�use/8). All
considered models can be seen in the top area of Figure 1.

Coherent Rays. As it can be seen in Figure 1 the presented method
is generally slower for primary rays. In worst case scenarios, 2-wide
and 4-wide BVH traversal is around 30% slower than the binary
reference. Yet, for primary rays in average, our 2-wide kernel
performs similarly e�cient as the 2-wide reference, wile the 4-wide
kernel is about 20% slower. Our 8-wide method is up to 50% slower
in speci�c setups and about 40% slower for primary rays on average.
In comparison to the 4-wide reference [Guthe 2014], our approach
is generally slower for primary rays.

Incoherent Rays. Considering di�use rays, our approach becomes
increasingly more performant. On average, our 2-wide and 4-wide
versions outperform both references by 10% to 20% and up to 100%
in individual cases. Our 8-wide version is generally inferior to both
references considering di�use rays.

Our method performs best with highly incoherent rays, as il-
lustrated by the times for the eighth bounce. �e 4-wide variant
surpasses the 4-wide reference [Guthe 2014] by more than 65% on
average and is more than 2.7 times faster in individual cases. Our 2-
and 8-wide variants exhibit a solid increase of about 35% and 45%
on average.

Ultimately, the presented method o�ers improved performance
for di�use rays and considerable e�ciency gains for strongly inco-
herent rays.

1h�ps://code.google.com/archive/p/understanding-the-e�ciency-of-ray-traversal-on-gpus/
2h�ps://github.com/lispbub/simd-ray-traversal

https://code.google.com/archive/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
https://github.com/lispbub/simd-ray-traversal
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Figure 1: Graphs showing the relative performance of our 2-, 4-, 8-wide variants, andGuthe’s approach [Guthe 2014] in relation
to the 2-wide reference [Aila et al. 2012] for primary and di�use (�rst bounce and eighth bounce) rays. Individual blocks
correspond to the models shown above each group of primary and di�use rays. In general, our methods perform very well
for incoherent rays for rather big and increasingly complex scenes on the expense of decreased e�ciency for primary rays. A
full tabulation can be found in the supplemental material.

Further Aspects and Limitations. As described in the previous
section, our approach uses persistent threads. Still, we do not
dynamically reload rays nor do we use speculative traversal as both
optimizations reduced the general performance of our approach.

Our kernel code demands only 32 registers and allows up to
100% occupancy. However, pro�ling indicates, that the presented
method is still heavily latency bound.

We also tested 16-wide and 32-wide BVHs and their traversal,
but similarly to the 8-wide method, performance decreases with
wider BVHs and larger thread groups. Consequently, we did not
consider wider trees in our �nal evaluation.

Our evaluation was primarily focused on the Pascal architecture.
Nevertheless, isolated tests on the Maxwell architecture indicated
that the method is not suited for older GPUs. �is might explain,
why Aila and Laine [Aila and Laine 2009] reported lacking perfor-
mance and this method has not been evaluated more thoroughly
until now.

5 CONCLUSION
We have presented and evaluated an alternative concept for ray
traversal on GPUs that mimics a method conventionally applied on
CPUs. Despite its origin, the general idea maps nicely to GPUs and
was surprisingly easy to implement and to integrate into existing
frameworks. In addition, its simplicity eases implementing BVHs of
various widths, while this �exibility does not result in diminished
performance. �ite the opposite, the approach exhibits heavily
improved performance for incoherent ray traversal.

Even though signi�cant improvements for incoherent rays have
been demonstrated, it should be noted that ray traversal perfor-
mance for highly coherent rays is lower than with the standard
approach. Also, e�ciency gains become apparent primarily on
the current Pascal architecture. Investigating the behaviour of the
presented method on newer architectures, e.g. Volta, is a very tempt-
ing topic for further analysis. Alternatively, applying additional
compression might also reveal bene�cial synergetic e�ects.
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