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Fig. 1. Our novel leaf quantization scheme provides much more exact results than earlier methods but

still achieves similar compression rates. The model shown above is composed of 8 control points and a

displacement map that introduces 9 spikes on each patch. A triangle-based reference (left), refined to level 6,

is approximated very well by our method (center), also refined to level 6. Our earlier, voxel-based approach,

even if refined to level 7 (right), does not capture strong displacement as well as our new method. Considering

the very similar overall compression of down to 31.3% (new) and 41.6% (voxel-based), our new approach offers

comparable compression rates accompanied with improved geometric fidelity.

Subdivision surfaces, especially with displacement, are one of the key modeling primitives used in high-quality

rendering environments, such as, e.g., movie production. While their use easily maps to rasterization-based

frameworks, they pose a significant challenge for ray tracing environments. This is due to the fact that

incoherent access patterns require storing or caching fully tessellated and displaced meshes for efficient

intersection computations. In this paper we use a two-tier hierarchy built on a scene’s patches. It relies on

compressed and quantized bounding volumes on the second tier to reduce the size of the BVH itself. Based

on this acceleration structure, we propose a quantized, compact approximation for leaf nodes while being

faithful to the underlying patch-geometry. We build on recent advances and present a system that shows

competitive performance regarding run-time speed, which is close to full-resolution pre-tessellation methods

as well as to previous compression approaches. Ultimately, we provide strong compression of up to a factor of

5 : 1 compared to state-of-the-art methods while maintaining high geometrical fidelity surpassing similarly

compact approximations and getting close to uncompressed geometry.
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1 INTRODUCTION
Parametric surfaces are a well-established tool for describing smooth, continuous, and optionally

displaced patches and models. Together with ray-tracing techniques for global illumination, these

primitives can be employed to create convincing renderings with impressive detail. Therefore,

e.g., feature film productions rely on these primitives [Christensen et al. 2006; DeRose et al. 1998].

Rendering displaced parametric surfaces is not easily possible using direct evaluation. Alternative

approaches usually require the conversion from these higher-order shapes to finely tessellated quad

or triangle meshes. However, as a consequence of the fact that the number of generated vertices

grows exponentially with each individual subdivision step, such detailed meshes demand enormous

amounts of memory.

In this paper, we describe an approach to improve the visual quality of compressed, tessellated

parametric surfaces, while simultaneouslymaintaining competitive compression rates and rendering

performance. In earlier work [Selgrad et al. 2016], we presented a method for strongly compressing

parametric patches (such as subdivision surfaces [Catmull and Clark 1978] and NURBS) by applying

quantization, sharing bounding box components, and approximating leaf nodes. Even though

achieving high compression rates and showing lower rendering error than competing methods,

when viewed close-up, or under strong displacement, the leaf-level approximation becomes visible.

We propose a remedy, as shown in the teaser (Figure 1), for these cases by introducing a novel

approximation for the leaf nodes: Instead of interpreting the leaf-level bounding boxes as voxels

and using the intersection values of those to find pu,vq- and surface hit information, we employ an

additional geometry level composed of quantized bounding-volume approximations based on the

encasing bilinear patches. This method is in line with the original algorithm [Selgrad et al. 2016],

but the image quality achieved is much closer to using a pre-tessellated triangle reference than to

the leaf-voxelization.

As the algorithm is closely related to our earlier work. [Selgrad et al. 2016], we will provide only

a very short overview of the broader spectrum of related work in Section 2 and then provide a more

detailed description of our primary reference in Section 3. Following that, we give an in-depth

description of our new leaf-level approximation in Section 4 before comparing it to previous work

in terms of image quality, rendering time, and overall compression in Section 5. We conclude our

presentation with Section 6.

2 RELATEDWORK
Ray tracing of parametric surfaces is a well researched topic. The easiest method may be fine

tessellation of the surfaces in combination with conventional ray tracing of the resulting triangle

mesh [Benthin et al. 2015; Catmull and Clark 1978]. Yet, for complex production-scale scenes the

huge number of necessary triangles leads to a tremendous memory consumption, which can be

reduced by applying adaptive tessellation [Christensen et al. 2006, 2003]. In particular for GPU-ray-

tracing [Aila and Laine 2009], high memory consumption is prohibitive, but also on CPU-systems

performance drops dramatically as soon as swapping becomes necessary [Yoon et al. 2006].
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An alternative is employing direct numerical computation of intersections between a ray and

B-Spline, NURBS, or subdivision surfaces [Abert et al. 2006; Geimer and Abert 2005; Kajiya 1982;

Tejima et al. 2015]. These approaches work directly on the input description of the surface, and may

cache intermediate results, requiring less memory than full tessellation. However, these approaches

suffer from numerical instability and long computation times. Even worse, most of these approaches

cannot handle displacements applied to the surfaces [Nießner and Loop 2013], which makes them

almost useless for production rendering.

Sorting rays prior surface intersection removes the need for caching. Hanika et al. [2010] propose

a two-layer BVH, where the second-tier BVH is generated on-the-fly with geometry shaders and

the leaf-level resembles micro-polygons. Before traversing the second layer, all relevant patch/ray

intersection candidates are recorded. Then, the individual patch BVHs are constructed and traversed

with the matching candidate-sets.

Another approach is to use a voxelization of the objects. Such voxelizations can be used for

interactive rendering [Crassin 2011] or fast interactive global illumination [Crassin et al. 2011].

Voxelizations are a goodmeans to prefilter detailed geometry, e.g. for fast occlusion queries [Lacewell

et al. 2008] or for fast global illumination [Christensen and Batali 2004]. Usually, voxelizations are

based on a uniform 3D grid, but also voxel octrees [Laine and Karras 2010] or leaves of a BVH

or kd-tree [Áfra 2012] can be interpreted as voxels. To avoid the blocky appearance of voxels,

per-voxel clipping planes can be defined [Áfra 2012; Laine and Karras 2010; Selgrad et al. 2016].

Considering the simplicity and advantages of tessellation and acknowledging its drawback

regarding memory requirements, a reasonable consequence is additionally applying compression

on the generated meshes. Lauterbach et al. [2007; 2008] and Segovia at al. [2010] describe such data

structures for leaf triangle data, which can be directly ray traced with only moderate impact on

performance.

Increasing numbers of primitives are accompanied with rapidly growing acceleration structures,

which demands compression of them as well. A useful approach for BVH nodes is defining their

bounds in relation to their parent’s extent. Combined with a conserving reduction in numerical

precision, this represents a hierarchical quantization [Hubo et al. 2006;Mahovsky 2005; Rusinkiewicz

and Levoy 2000]. Quantized values lead to small overestimations of the actual box dimension, which

results in some performance loss [Bauszat et al. 2010]. Kim et al. [2010b] compress whole subtrees

of BVHs with a ratio of 12 : 1 and decompress them lazily during traversal. In other work, Kim et

al. [2010a] present a scheme that can be directly traversed but also exhibits a weaker compression

ratio of 3.6 : 1. Novak et al. [2012] propose an alternative BVH, where the leaves are height fields

that can be stored and ray traced efficiently. Policarpo et al. [2006; 2005] propose a related approach

for real-time rendering, where intersections with height-field and non-height-field representations

are applied to add surface details in the fragment shader.

BVHs for primitives originating from parametric surfaces can be considered as a special case.

First, good BVHs can be derived directly from a patch’s quadtree, which can be obtained from

consecutive subdivision or tessellation. Second, using the full tree [Benthin et al. 2015], its nodes can

be addressed implicitly and a bilinear geometry representation is most suitable. Third, lower-level

subtrees of patches often describe rather flat areas, the bounds of which can be predicted well, and

thus quantization with only few bits can suffice. In combination with other optimizations to reduce

memory consumption, we applied these findings in earlier work [Selgrad et al. 2016] to compress

BVHs to 8 bits per node. Furthermore, instead of storing leaf triangles, we directly exploited the

BVH’s leaf nodes as surface voxels, similarly to R-LOD [Yoon et al. 2006]. As a result, we could

keep very finely tessellated surfaces even in GPU memory and ray trace such surfaces with only

moderate impact on performance.
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3 COMPRESSED BVHS AND LEAF-VOXELS
As our method is based on earlier work [Selgrad et al. 2016], we will give a brief overview of

the foundational algorithm in this section. We suggested a two-level-BVH representation for

compressing quadrilateral geometry derived from potentially displaced parametric surfaces. The

top-level is a standard, uncompressed BVH composed of globally axis-aligned bounding volumes

that contain the scene’s subdivided patches. These patch fragments, or subpatches, must satisfy

a certain criterion in flatness, which can be determined with the opening angle of the surface’s

normals. The bottom-level, and thus the bulk of the hierarchy, is then made up of compressed and

quantized 4-wide BVHs (called CBVHs).

A finely tessellated, quadrilateral surface, to be more specific the resulting vertex grid, is the
foundation of the two-tier BVH. As seen in Figure 2, subsets of the vertex grid are considered as

subpatches and are used to define local coordinate frames. These local frames are aligned to the

surface’s parameter space and only fully balanced trees are used for CBHVs. Storing the tree’s

nodes in a linear fashion allows implicit addressing of CBVH nodes. In addition, applying Morton

decoding on a node index yields the relative position of the subpatch or leaf node on the surface.

Therefore, a leaf’s pu,vq-coordinates, as well as its vertex indices, can be derived implicitly from the

leaf’s index in the z-curve. According to that, CBVHs consist solely of implicitly ordered bounding

volumes and do not require additional information such as pointers, pu,vq-coordinates, or vertex

indices. Consequently, compressing only the bounding volumes has an immense impact on the

actual size of the whole BVH.

Projection. The per-CBVH transformation ensures that the vertices of the local subpatch are

mostly planar and rectangularly arranged in the local space. As a result, bounding volumes of such

vertices are aligned to the subpatch’s parameter space. Furthermore, the transitions into these

spaces are projective as also trapezoid patches should map to the unit-square in local pu,vq. This

mapping leads to tight bounds for crooked patches, where the former are still axis-aligned, which

limits the required information to be stored and is very beneficial for later intersection tests.

Compression. The first element of the compression is an aggressive hierarchical quantization,

which stores bounds of subnodes relative to their parent nodes and requires only few bits (e.g.,

three bits in local x ,y and two in z). The second compression aspect is folding of similar bounds.

As it can be seen in Figure 3, directly adjacent bounding volumes have very similar bounds. In

such cases, storing the more general bound is sufficient and introduces only a small overestimation

due to the projective local mapping. The final compression component is reusing the parent’s

bounding volume in a similar fashion as described for node siblings. Folding of neighboring bounds

is conceptually depicted in Figure 4.

Voxelization. Previously shown compression schemes can be used in two ways: to plainly com-

press the BVH and to also approximate the leaf geometry. In the first case, the leaf-geometry

remains as is and only the BVH is compressed, which overall results in low compression rates of

2 : 1, but does not compromise on image quality. The impact of storing geometry is limited by

efficiently encoding the leaf geometry [Lauterbach et al. 2008; Wald et al. 2014] as a vertex grid and

calculating required indices implicitly and ad-hoc. The second case is visualized in Figure 3. As it

can be seen, projectively patch-aligned BVHs can envelop the underlying geometry tightly enough

that the actual geometry can be omitted. To yield the full potential, the leaf-geometry is dropped

entirely and approximated by the local bounding boxes. This yields overall compression rates of up

to 16 : 1, but at the cost of image fidelity.
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Fig. 2. For almost flat sub-patches, compressed and quantized CBVHs are built and embedded in the standard

BVH. The left panel shows a whole patch and its surface vertices. As depicted right, the root of a CBVH

is aligned along a subset of vertices of the whole patch and all child-nodes are understood to be in this

CBVH-specific frame of reference.

Fig. 3. Local coordinate frames are defined only once per CBVH and subnodes remain in the local frame.

As it can be seen in the right panel, leaf-level bounding volumes can be exploited as a voxelized geometry

representation.

Fig. 4. Inner bounds (left, light colors) can be approximated by more general bound of neighboring bounding

volumes (right, dark colors), thus inner bounds can be completely discarded.

Adaptivity. The baseline algorithm [Selgrad et al. 2016] does not tessellate patches adaptively

but rather can flexibly adjust the level at which it switches to the local coordinate frame and adapts

the height of the BVH to current needs. Even if a specific view requires only a low subdivision

level, we favoured maximal tessellation for each patch. Doing this ensures that every single layer of

the CBVH is a conservative approximation of the finest tessellation level. This approach enforces a

crack-free representation for adjacent bounding volumes, even if they reside on different levels of

the CBVH. Since there is no inherent difference between inner and leaf nodes, each node on each

level can be directly utilized as a leaf voxel by decoding its pu,vq-coordinate and span. As a result,

switching to a coarser approximation for a specific region requires only pruning the corresponding

CBVH and optionally switching earlier to the local frame. With this approach, the number of leaves

and thus the overall size of the BVH can be greatly reduced without introducing cracks.

Limitations. The main problem with using the leaf-boxes as geometry approximation is that

those boxes are aggressively quantized and compressed on each level of a CBVH down to the leaf.

Therefore, even though the bounds are still reasonable for ray culling, they are usually overestimated

and, regarding the actual leaf-geometry, poorly aligned. Overestimation follows from repeated

quantization and folding of box components, while poor alignment is caused as there is only one

transformation stored for each path from the hierarchy’s root to each leaf. Thus, the alignment

fits well for the interior node for which it is constructed, and provides a better frame of reference

for compression, but further subdivision can yield patches that are rotated somewhat with respect

to this frame, and will thus be approximated by a non-planar box. Therefore, images rendered
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Fig. 5. High tessellation levels are required if the box approximation is used for close-ups with heavily

displaced models. The left image shows refinement level 6 with 3 uncompressed levels and the center image

shows refinement level 8 with 4 uncompressed levels. The triangle reference for refinement level 6 is shown in

the right image.

with this method show good quality when viewed at a certain distance, but the approximation

shows when viewed close-up, as displayed in Figure 12, and even breaks if displacement is applied

excessively, such as illustrated in Figure 5.

The suggested alternative is utilizing the BVH only in its conventional sense and to preserve the

vertex data of the finely tessellated mesh for the ad-hoc reconstruction of triangles during hierarchy

traversal (as also suggested by previous approaches [Lauterbach et al. 2008; Wald et al. 2014]). This

does not introduce further approximations on top of tessellation but reduces the compression ratio

to 2 : 1, which, in this case, is a severe decrease.

4 EXTENDED SURFACE APPROXIMATION
The method described in the previous section serves as the foundation for this paper, from which

many properties have naturally been adopted. We utilize the same two-tier BVH and make ex-

tensive use of the locally oriented lower level. We also exploit its quantized, compressed node

structure but avoid the issues described above by introducing a novel, compact leaf representation.

Our leaf representation is specifically tailored to be embedded in the leaf voxels of the previous

approach [Selgrad et al. 2016]. The additionally required memory is well amortized by the fact that

the improved accuracy allows to decrease the depth of the BVH, which has a strong impact on

overall memory consumption. In this section, we demonstrate how a better surface approximation

can be obtained. Furthermore, we will introduce a custom-made, fast intersection test for our

surface approximations with only little demand in extra computation.

Overview. Instead of directly using voxels as a geometry representation we store additional

voxel-relative surface information. In short, our approach snaps vertices of the finest tessellation

level onto the vertical edges of leaf-level bounding volumes. This allows reusing the bounding

volume’s x ,y values of the corners, thus we only have to store the z value of the snapped vertices. To
avoid cracks, we set the reconstructed geometry to a specific thickness that conservatively bounds

original vertex positions and suffices as an approximate surface representation. This leaf-level

approximation shows improved quality, while still allowing us to fall back to the original adaptive

traversal for configurations that call for more coarse approximations. Falling back on the voxelized

representation can reduce the memory requirements and does not introduce cracks due to the

conservative quality of the voxelized approximation and our leaf representation, which holds true

even for boundary vertices shared by both approximations on transition regions.
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Fig. 6. Using only a single quantized value for approximating the leaf-geometry causes visible cracks (left,

center-top). Using intervals prevents cracks (center-bottom, right).

4.1 VertexQuantization
The bounding box depicted in the inset figure represents a single leaf-level voxel, slightly exagger-

ated in height for the sake of visual clarity. With the original method [Selgrad et al. 2016] this voxel

would be used as geometry approximation (as illustrated in Figure 3).

In contrast, instead of dropping the vertices of the underlying surface,

we store the z-component of the four vertices enclosed in relation to

the bounding voxel. To this end we quantize z at the corners of the

bounding box by k bits (3 bits in Figure 6, 4 bits in our renderings). Since

a single vertex is covered by four neighboring leaf-level voxels (see

Figure 2 and 3), the relative z value must be stored individually for each

leaf-node. This circumstance is caused by the fact that each vertex/voxel

pair can result in different quantization due to the varying height of the bounding volumes. Despite

the need to store each quantized value four times

‘

4ˆ4 bits

8
“ 2 bytes

˘

, this approach requires less

memory than storing each px ,y, zq value only once in full precision (3ˆ 4 bytes “ 12 bytes), which

is equal to a compression factor of 6 for the underlying geometry.

Flat Voxelization. Using a single quantized, box-relative value per x ,y-corner introduces a grave
potential for cracks in the approximation. Figure 6 (center-top) illustrates this in 2D: With shifted

boxes it is very unlikely that the quantized edges coincide exactly. To counter this, we instead use

intervals at each x ,y-corner to provide a form of geometry-aligned voxelization on a per-leaf basis.

As the limit surface of the patch smoothly transitions from one box to its neighbor, and therefore the

limit vertex in-between is conservatively enclosed by both their bounding volumes, it is sufficient

to set the thickness of these intervals to one bin. Utilizing the described flat interval-based voxels

avoids cracks inside a CBVH and, as this allows us to only store the lower bound, it is free in

terms of memory. Note that, for patches on CBVH-borders, neighboring boxes can also be rotated

differently, but due to the conservative nature of the approximation, our method works well in

practice and we did not notice cracks even in extreme cases. Still, being conservative requires an

appropriate mapping of possibly off-bounds shifted vertices to corresponding z-intervals on the

x ,y-corners.

Extrapolation. During hierarchy construction, the leaf-patch can be found to not fully cover the

x ,y-range of a leaf box, leading to leaf-level vertices not coinciding exactly with their voxel’s x ,y-
bounds. Figure 7 (left) illustrates such a configuration. This can be due to repeated overestimation

during box quantization and compression, but also due to non-trapezoidal bending of the underlying

surface, since only strictly trapezoidal patches can be captured exactly with a perspective projection

to the local frame. Simply stretching the patch to cover the entire range naturally adds distortion,
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Fig. 7. Illustration of the orientation and position of the patch within the bounding volume (left). Directly

utilizing a vertex’s z-values leads to defective approximations (center). The solution is extrapolating the

z-value onto the box-corners, prior to quantization and storing (right).

Fig. 8. The local coordinate frame, depicted with red arrows in the left image, is aligned to the non-displaced

surface vertices highlighted in red. Such a setup leads to larger bounding volumes, as seen in the center,

but the displacement primarily affects the height of the bounding volumes, which perfectly maps to our

additional surface approximation, as can be seen in the right image.

as demonstrated with the green surface in Figure 7 (center). Even worse, with that approach it

cannot be guaranteed that the patch approximation still contains the stretched vertices’ original

positions. A likewise intuitive solution is extrapolating the linear patch prior to quantization, as

shown in Figure 7 (right), thus overestimating the surface for such configurations. This mapping

can, however, result in the new patch’s z-bounds leaving the original leaf-box. Nevertheless, we
extend the z-range escaping the leaf-box but limit intersections to be valid only within the actual

bounding volume. The possible extent is determined and defined on a per-CBVH basis, i.e. adaptive

per aligned sub-tree. Therefore, we provide high-resolution quantization for patches not needing

the extra extent, but we avoid heavy distortion and preserve conservative bounds for most cases

that do. In practice, we limit the z-scaling to three times the height of the local box.

Frame Alignment. An additional aspect we identified as advantagous is changing the basis on

which local coordinate frames are aligned. In contrast to the earlier method, we align the local

system along non-displaced patch vertices. This can lead to looser bounds for the leaf nodes [Selgrad

et al. 2016], but this is not critical with our approximation, as illustrated in 2D in Figure 8. In fact,

the adjusted alignment is even beneficial, since the variation introduced via displacement affects

mainly to the local z-component, which matches well with our interpretation of a patch varying

mostly in z and can easily be captured with our approximation.

4.2 Intersection
An additional benefit of our patch approximation is the fact that it can be efficiently tested for ray

intersections. Naïvely searching for intersections with our patch approximation requires us to test

multiple surfaces. In that case, we have to compute intersection tests for at least 4 quads and 2
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Fig. 9. A naïve approach requires intersection tests with multiple individual surfaces, e.g. 4 triangles and 4

quads (left) or 2 bilinear patches and 4 quads. For our approximation, one single 2D line intersection test is

sufficient (right).

bilinear patches, or alternatively 4 triangles as depicted in Figure 9. However, these approaches do

not take into account that the entry and exit point of the surrounding bounding box are known

during traversal. Exploiting this fact, our approximation can be tested for intersection with only one

single 2D line intersection test. To this end, we use an approximate intersection test that projects

the ray onto a straight line on the surface. The line is constructed from the entry and exit points of

the bounding box projected to surface points (see Figure 9). This approach yields the same results

as bilinear-patch intersections if the ray is exactly aligned to the x or y axis. Results for misaligned

rays differ since saddle-shaped surfaces cannot be represented faithfully. Still, the approximation is

exact at patch borders, crack-free within the surface, and neither bilinear patches nor triangles are

as simple and lightweight regarding the computation of intersections.

Thus, after initial parameter finding, the ray-leaf intersection reduces to a 2D line intersection in

the ray/z0, z1-plane, as depicted in Figure 9 (right). For the test we rely on the ray parameters of the

leaf’s bounding box intersection, t0 and t1, as well as the leaf’s box values, Bmin and Bmax. The entry

and exit positions, P0 and P1, can be computed from the ray and the parameter values above. Note

that all of these are defined and used in the local, patch-aligned frame. Then, the pu,vq-parameters

at the ray’s entry and exit point on the box are:

ui “
pPi,x ´ Bmin,x q

pBmax,x ´ Bmin,x q
vi “

pPi,y ´ Bmin,yq

pBmax,y ´ Bmin,yq

With these, the z value of the approximated patch at the entry and exit pu,vq-parameters can be

computed via linear interpolation of the restored values at the box’s x ,y-corners, z00, z01, z10, z11:

zi “ z00p1 ´ ui qp1 ´vi q ` z10ui p1 ´vi q ` z01p1 ´ ui qvi ` z11uivi

This gives the line that the linear patch describes along the ray, and thus the ray intersects the

patch if it intersects this line.

As we approximate bilinear surfaces with the upper and lower bounds of the leaf geometry,

we distinguish between three cases for intersecting leaves. If the ray’s z-value at the box-entry is

above the patch, P0,z ą z0 ` ∆, where ∆ is the bin-size (we only store the lower bounds), we use

the upper bound for intersection testing. In the mirrored case, P0,z ă z0, we intersect the lower
bounds with the ray. Finally, if z0 ď P0,z ď z0 ` ∆ we know that there is an intersection at the

ray’s entry point on the box.

Using the entry point’s distance t0, the point’s z-value P0,z , and the surface’s interpolated z-value
z0 (for the exit point t1, P1,z , and z1) the distance t to the actual hit point on the surface can be
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Fig. 10. Hit-point difference in pixels with respect to a triangle mesh of the same subdivision level. The top

row shows cubical patch approximations and the lower row shows our new patch approximations. All figures

use a subdivision of level 6 but switch to the locally oriented frame on different levels. From left to right we

switched after level 2, 3, and 4 to the local frame. Error ranges from blue (no error), pink (distance greater

than 5 pixels), and black (false-positive hit).
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Ptex T-Rex model ©2007 Walt Disney Animation Studios

Fig. 11. Hit-point difference in pixels with respect to a finely tessellated mesh (shown is the T-rex’s nose, see

Figure 12). A subdivision level of 6 was apply for c
3

voxel
(left), c

2

leaf
(center) and subdivision level 8 was used

for c
4

voxel
(right). The overall RMSE from left to right is 0.146, 0.064, and 0.093. Note the visual comparison of

c
3

voxel
to c

4

voxel
shown in Figure 5.

evaluated utilizing a simple 2D-line intersection test. The calculations for the hit point’s z-value
can be omitted, since we only require the t component of the line intersection:

t “
t0pP1,z ´ z1q ` t1pz0 ´ P0,zq

pP1,z ´ z1q ` pz0 ´ P0,zq

Testing only once per patch applying this intersection scheme is considerably more lightweight

than identifying the intersection on each face of our patch approximation individually.
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c
3

voxel
c
2

leaf

Ptex T-Rex model ©2007 Walt Disney Animation Studios

Fig. 12. The center panel above shows that the silhouette of the subdivided and displaced patches of the

T-rex’s nose are visibly approximated, and that inner regions can become distorted using c
3

voxel
. Those artifacts

are not visible with c
2

leaf
(right panel), both refined to level 6. The visible differences are minor, but being

able to transition to local CBVHs one level sooner, the c
2

leaf
version requires 94 MiB for the entire model

(101.4 MiB with c
3

voxel
). Considering this, and that traversal times are very similar (422 versus 439 millions of

rays per second, respectively), the increase of quality (RMSE 0.064 for c
2

leaf
versus 0.146 for c

3

voxel
) seems

worthwhile. See also the equal-memory comparison shown in Figure 11 (left/center).

grid c
3

voxel
c
2

leaf

Fig. 13. While the Monster Frog on subdivision level 6 can be represented nicely with the voxelization (center,

c
3

voxel
) compared to the reference (left, grid), the former is not sufficient to cover highly displaced regions,

e.g., individual spikes, on that subdivision level. Our representation does not exhibit such limitations (right,

c
2

leaf
) despite using the same subdivision level and switching to CBVHs one level sooner.

grid c
3

voxel
c
2

leaf

Fig. 14. Challenging regions are composed of rather large displaced patches. Applying 6 subdivision steps, our

approach (right, c
2

leaf
) is not able to cover the tip of the scythe perfectly but represents the actual silhouette

more faithfully than the voxelization (center, c
3

voxel
) compared to the reference (left, grid).
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grid

c
3

voxel

c
2

leaf

Fig. 15. Our approach benefits from our non-displaced frame alignment especially for high-curvature patches,

e.g, the knee. The voxelization (c
3

voxel
) applies coordinate frames aligned to the displaced geometry (center)

and approximates patches with flat surfaces. This results in individually aligned but flat areas on the

knee. Coordinate frames used in our method (c
2

leaf
) are aligned with the not-displaced geometry (left) and

displacement is handled wholly by the patch approximation. Compared to the reference (grid) our approach

offers a visually comparably smooth curvature.

5 EVALUATION
In this section, we evaluate our method in context of previous approaches, all of which are imple-

mented for GPU and CPU ray tracing. The former are implemented according to Aila and Laine’s

method [Aila and Laine 2009], while the latter are integrated in Embree [Wald et al. 2014].

Overall we compare the following methods:

naive A full-precision, memory intensive BVH according to the state of the art in fast ray

traversal [Aila and Laine 2009; Wald et al. 2014].

grid A BVH using a cleverly packed, full-precision, lossless, grid-based leaf-layout [Lauterbach

et al. 2008], specifically tailored to subdivision patches [Wald et al. 2014].

c
n
grid

A strongly compressed BVH (with CBHVs starting from level n) [Selgrad et al. 2016] using a

full-precision grid-based layout for the leaf geometry (as with grid).

c
n
voxel

The same CBVH-based layout where leaf geometry is approximated by the compressed leaf

bounds, only [Selgrad et al. 2016].

c
n
leaf

Our CBVH-based method with our novel approximation for leaf geometry as described in

Section 4.

Image Quality. Our novel leaf approximation shows much better results than previous leaf-voxel

approximations [Selgrad et al. 2016]. Rendering errors for our teaser image, shown in Figure 1,

are displayed in Figure 10. It depicts the error progression of hit-point differences with increasing

subdivision level at which we move to the CBVH, while keeping the maximal refinement level

capped to 6. Intersection points originating from c
n
voxel

(top) and c
n
leaf

(bottom) are compared to

intersection points obtained from a triangle mesh of the same tessellation level with their distance

normalized to pixel footprint at the given intersection depth. The figure shows that our new method
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Fig. 16. Performance of coherent (left) and incoherent (right) ray traversal in millions of rays per second at

subdivision levels 4 (green), 5 (blue), and 6 (red), on a GPU (Nvidia GeForce GTX 1070, top) and on a CPU

(Intel Core I7-6700, bottom), times taken on the full T-rex model (see Figure 12). The missing entry in the top

row indicates that the naïve version was too large to be stored on the GPU.

23
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29

naive grid c2
voxelc2

leafc2
grid c3

voxelc3
leafc3

grid

1533% 100% 104% 74% 65% 206% 244% 235%

24

26

28

210

naive grid c2
voxelc2

leafc2
grid c3

voxelc3
leafc3

grid

1615% 100% 77% 31% 22% 104% 76% 67%

25

27

29

211

213

naive grid c2
voxelc2

leafc2
grid c3

voxelc3
leafc3

grid

1651% 100% 70% 20% 10% 76% 32% 22%

Fig. 17. Memory requirements (in MiB) for subdivision levels 4 (green), 5 (blue), and 6 (red) for the T-rex model

shown in Figure 12. Note the log-scale and different maximum per plot. The darker part of each bar represents

the memory required for the inner nodes, the lighter part indicates the fraction of memory required for the

leaf geometry. With higher subdivision levels the fraction of leaf geometry increases much faster for c
grid

than for our new representation c
leaf

. The percentages given at the top are relative to state of the art lossless

compression [Lauterbach et al. 2008; Wald et al. 2014], i.e. grid.

results in significantly lower rendering error when compared to the plain voxelization with a CVBH

of equal height.

Furthermore, the comparison demonstrates that the higher precision of our leaf-approximation

warrants earlier alignment, even more so as it still results in a lower error. This is nicely exemplified

by comparing the bottom left image, c
2

leaf
, with the top right one, c

4

voxel
. Therefore, our new

method enables us to switch to the local frame sooner, meaning that it is sufficient for the patch

approximation to rely on more coarsely aligned frames, resulting in a much lower overall memory

footprint. Alternatively, its application can improve the visual quality compared to leaf-voxel

approximations [Selgrad et al. 2016] while not increasing memory consumption.

Figure 11 illustrates the rendering error for a production model that is more well-behaved than

the example shown in Figure 10. Even in this case our novel method, c
2

leaf
, produces considerably

lower error than previous methods at similar memory requirements as c
3

voxel
(left vs center).

Targeting a similar (but still inferior) quality, c
4

voxel
is required, diminishing the compression by

c
voxel

. Figure 12 highlights the differences that appear when viewed close-up. Note that we do not

further consider c
4

voxel
and c

4

leaf
, since storing coordinate frames at such high subdivision levels

renders the compression almost useless for practical subdivision levels, due to the heavily increased

memory requirements.

Figures 13, 14, and 15 show various models on subdivision level 6 and highlight individual cases,

e.g., strong displacement, large patches, high curvature, where applying c
2

leaf
over using c

3

voxel

highlights the improved quality.

Rendering Performance. Rendering performance is at a maximum when using the naive BVH

representation with full-precision leaf nodes. This is to be expected as compression schemes

generally introduce decompression overhead. However, the missing entries in the top-row of

Figure 16 already suggest that this approach is severely limited by memory consumption. At some
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point, slower storage (e.g. falling back to the CPU, or swapping of main memory) will result in much

inferior performance [Yoon et al. 2006]. In the following, listed methods will be annotated with

min%-max%, I avg%, indicating the minimum, maximum, and average performance normalized to

grid.

Of the grid-based methods, the standard grid generally shows faster rendering times than further

compressed versions. c
grid

are CBVHs that keep the grid-based leaf-level and show the lowest

performance [65%-99%, I84%] because two full triangle intersections have to be computed for each

leaf hit. Dropping the triangle tests entirely by using c
voxel

provides better performance [73%-105%,

I86%], however at the cost of rendering quality.

Our new method, c
leaf

[69%-92%, I80%], performs very close to c
grid

[I84%] and c
voxel

[I86%].

It should be noted, however, that c
2

grid
consumes considerably more memory than c

2

leaf
on realistic

subdivision levels, as shown in Figure 17. Furthermore, to achieve similar image quality to c
2

leaf
on

subdivision level 6 using the voxel-based approximation, c
4

voxel
should be used but still requires

subdivision level 8 (see Figure 11). This version, at the given refinement level, however, performs

[64%-72%, I68%] inferior to c
2

leaf
[I80%] and requires much more memory since the shift to CBVHs

is delayed, as well as due to the high refinement level. Overall, this suggests that the increase in

image quality of c
leaf

will not come at an increased rendering time when compared to methods

with similarly high compression rates, especially under strong displacement or for close-up views.

Memory Requirements. As described above, our approach offers a reduction in rendering error

compared to the voxelized baseline approach. One result of using more information on the leaf-level

is that our structure is larger than c
voxel

, which does not store leaf information, while we store

2 bytes per leaf. Figure 17 shows the memory consumption of different BVH variants grouped

by overall subdivision level. For very low levels, grid works very well: the compressed variants

cannot amortize the overhead of storing transformations. Medium and higher levels, however,

are much more compact with c
2

voxel
, only taking 10%, and c

2

leaf
, which is only 20% of grid. The

differently shaded areas in each bar give the relative memory for inner nodes and leaves for each

variant. This shows that, even though the inner nodes for, e.g. c
3

grid
and c

3

leaf
are of the same size,

the leaf-portion of c
3

grid
is larger.

However, the relationships illustrated in Figure 17 are only true when we utilize exactly the

same CBVHs, meaning that we switch to the local frame on the same level and compute the same

number of refinement levels, such as level 6 with c
3

leaf
and c

3

voxel
. Based on the improved overall

approximation quality demonstrated above, we can, however, choose a lower level for the transition

into local frames (c
2

leaf
vs. c

3

voxel
).

Even more importantly, using our higher-quality representation we can limit overall refinement

to lower levels. With leaf-voxelization, this is problematic as the underlying structure will become

apparent, while our representation produces more faithful results. This reduction is not in the order

of multiplying a constant to the number of leaf nodes but can lead to generating exponentially

fewer leaves in the first place. As an example, consider the comparison shown in Figure 11. To

achieve the image quality provided by our novel c
2

leaf
at subdivision level 6, the leaf-voxelization

c
voxel

has to be built on subdivision level 8 with a transition into local frames after half of those,

i.e. c
4

voxel
. This, however, results in worse rendering times (see above) and totals to 555 MiB of

memory, as compared to c
2

leaf
’s 94 MiB. A similar example can be found in Figure 12.

Full tabulation of all measurements for the T-rex (Figure 12), Barbarian (Figure 14), Monster

Frog (Figure 13), and the Alien (Figure 15) can be found in the supplemental material. It covers

ray-tracing performance and memory requirements on the CPU and GPU for all considered BVHs,

leaf types, and ray queries. Furthermore, our implementation is available online
1
.

1
https://github.com/lispbub/embree-compressed
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Fig. 18. The left panel shows our patch approximation with 3 compressed levels and the right panel shows a

triangle representation. Both show a subdivision level of 6 and a fivefold displacement compared to Figure 1.

Displacement. The limitations of our approach become apparent when displacement exceeds the

point of being applied for adding surface structure with rather moderate amplitudes but is used

for large-scale deformation of the geometry. While the limitations of the voxelized approximation

are already depicted in Figure 1, the limitations of our approach become apparent only with

heavily increased displacement scale. Figure 18 shows a comparison between our approach and

a triangle representation with fivefold displacement compared to the teaser. However, we find

such applications rather unlikely, since even the triangle representations starts to lose geometric

fidelity at such high displacement levels. Increasing the subdivision level would naturally ease

this situation for the triangle representation as well as for our approximation, but at the cost of

increased memory requirements.

6 CONCLUSION
In this paper we have presented a very simple method to obtain higher quality renderings from an

existing compressed representation for subdivision surfaces. We have shown that at the same render

times and memory consumption, our leaf approximation generates images more faithful to the

underlying surface. This is especially noticeable at silhouettes, where more coarse approximations

reveal their structure, but also for close-up views and strong displacement.

Another way to look at these results is that we can achieve image quality similar to, e.g. leaf-

voxelization, with earlier projection into the local frame or even by not subdividing to similarly

high levels. The latter maps to an even more pronounced decrease in memory consumption, as even

the most compact representation will become intolerably large when requiring high subdivision

levels, which can be avoided using our leaf-representation.

ACKNOWLEDGMENTS
The authors would like to thank the Walt Disney Animation Studios for giving access to the T-rex

model and its detailed textures, Bay Raitt for the Monster Frog model, Autodesk for providing the

Barbarian model, and Aidlez R. for the Alien model. We also gratefully acknowledge the generous

funding by the German Research Foundation (GRK 1773).

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 33. Publication date: August 2018.



33:16 A. Lier et. al.

REFERENCES
Oliver Abert, Markus Geimer, and Stefan Müller. 2006. Direct and Fast Ray Tracing of NURBS Surfaces. IEEE Symposium on

Interactive Ray Tracing 2006 (2006), 161–168.
Attila T. Áfra. 2012. Interactive Ray Tracing of Large Models Using Voxel Hierarchies. Computer Graphics Forum 31, 1

(2012), 75–88.

Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of Ray Traversal on GPUs. Proceedings of the conference on
high performance graphics 2009 (2009), 145–149.

Pablo Bauszat, Martin Eisemann, and Marcus A Magnor. 2010. The Minimal Bounding Volume Hierarchy. Vision, Modeling,
and Visualization (2010), 227–234.

Carsten Benthin, Sven Woop, Matthias Nießner, Kai Selgrad, and Ingo Wald. 2015. Efficient Ray Tracing of Subdivision

Surfaces using Tessellation Caching. In Proceedings of the 7th High-Performance Graphics Conference. ACM.

Edwin Catmull and James Clark. 1978. Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes. Computer-
aided design 10, 6 (1978), 350–355.

Per H. Christensen and Dana Batali. 2004. An Irradiance Atlas for Global Illumination in Complex Production Scenes.

In Proceedings of the Fifteenth Eurographics Conference on Rendering Techniques (EGSR’04). Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 133–141.

Per H. Christensen, Julian Fong, David M Laur, and Dana Batali. 2006. Ray Tracing for the Movie ‘Cars’. IEEE Symposium
on Interactive Ray Tracing 2006 (2006), 1–6.

Per H. Christensen, David M Laur, Julia Fong, Wayne L Wooten, and Dana Batali. 2003. Ray Differentials and Multiresolution

Geometry Caching for Distribution Ray Tracing in Complex Scenes. Computer Graphics Forum 22, 3 (2003), 543–552.

Cyril Crassin. 2011. GigaVoxels (a Voxel-Based Rendering Pipeline for Efficient Exploration of Large and Detailed Scenes). Ph.D.
Dissertation. Universite de Grenoble.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann. 2011. Interactive Indirect Illumination

Using Voxel Cone Tracing. Computer Graphics Forum 30, 7 (2011), 1921–1930.

Tony DeRose, Michael Kass, and Tien Truong. 1998. Subdivision Surfaces in Character Animation. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’98). ACM, New York, NY, USA, 85–94.

Markus Geimer and Oliver Abert. 2005. Interactive Ray Tracing of Trimmed Bicubic Bézier Surfaces without Triangulation.

WSCG 2005 Conference Proceedings (2005), 71–78.
Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. 2010. Two-level Ray Tracing with Reordering for Highly

Complex Scenes. In Proceedings of Graphics Interface 2010 (GI ’10). Canadian Information Processing Society, Toronto,

Ont., Canada, Canada, 145–152.

Erik Hubo, Tom Mertens, Tom Haber, and Philippe Bekaert. 2006. The Quantized kd-Tree: Efficient Ray Tracing of

Compressed Point Clouds. IEEE Symposium on Interactive Ray Tracing 2006 (2006), 105–113.
James T Kajiya. 1982. Ray Tracing Parametric Patches. ACM SIGGRAPH Computer Graphics 16, 3 (1982).
Tae-Joon Kim, Yongyoung Byun, Yongjin Kim, Bochang Moon, Seungyong Lee, and Sung-Eui Yoon. 2010a. HCCMeshes:

Hierarchical-Culling Oriented Compact Meshes. Computer Graphics Forum 29, 2 (2010), 299–308.

Tae-Joon Kim, BochangMoon, Duksu Kim, and Sung-Eui Yoon. 2010b. RACBVHs: Random-Accessible Compressed Bounding

Volume Hierarchies. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010), 273–286.
Dylan Lacewell, Brent Burley, Solomon Boulos, and Peter Shirley. 2008. Raytracing prefiltered occlusion for aggregate

geometry. In 2008 IEEE Symposium on Interactive Ray Tracing. 19–26.
Samuli Laine and Tero Karras. 2010. Efficient Sparse Voxel Octrees. In Proceedings of the 2010 ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games (I3D ’10). ACM, New York, NY, USA, 55–63.

Christian Lauterbach, Sung-Eui Yoon, and DineshManocha. 2007. Ray-Strips: A CompactMesh Representation for Interactive

Ray Tracing. In 2007 IEEE Symposium on Interactive Ray Tracing. 19–26.
Christian Lauterbach, Sung-eui Yoon, Ming Tang, and Dinesh Manocha. 2008. ReduceM: Interactive and Memory Efficient

Ray Tracing of Large Models. Computer Graphics Forum 27, 4 (2008), 1313–1321.

Jeffrey A Mahovsky. 2005. Ray Tracing with Reduced-Precision Bounding Volume Hierarchies. Ph.D. Dissertation. University
of Calgary.

Matthias Nießner and Charles Loop. 2013. Analytic Displacement Mapping Using Hardware Tessellation. ACM Transactions
on Graphics (TOG) 32, 3 (2013), 26.

Jan Novák and Carsten Dachsbacher. 2012. Rasterized Bounding Volume Hierarchies. Computer Graphics Forum 31, 2 (2012),

403–412.

Fábio Policarpo and Manuel M. Oliveira. 2006. Relief Mapping of Non-height-field Surface Details. In Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games (I3D ’06). ACM, New York, NY, USA, 55–62.

Fábio Policarpo, Manuel M. Oliveira, and João L. D. Comba. 2005. Real-time Relief Mapping on Arbitrary Polygonal Surfaces.

In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games (I3D ’05). ACM, New York, NY, USA, 155–162.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 33. Publication date: August 2018.



A High-Resolution Compression Scheme for Ray Tracing SubD Surfaces w. Displacement 33:17

Szymon Rusinkiewicz andMarc Levoy. 2000. QSplat: AMultiresolution Point Rendering System for LargeMeshes. Proceedings
of the 27th annual conference on Computer graphics and interactive techniques (2000), 343–352.

Benjamin Segovia and Manfred Ernst. 2010. Memory Efficient Ray Tracing with Hierarchical Mesh Quantization. Proceedings
of Graphics Interface 2010 (2010), 153–160.

Kai Selgrad, Alexander Lier, Magdalena Prus, Christoph Buchenau, Michael Guthe, Franziska Bertelshofer, Henry SchÃďfer,

and Marc Stamminger. 2016. A Compressed Representation for Ray Tracing Parametric Surfaces. ACM Transactions on
Graphics (TOG) (2016), 5:1–5:13.

Takahito Tejima, Masahiro Fujita, and Toru Matsuoka. 2015. Direct Ray Tracing of Full-Featured Subdivision Surfaces with

Bézier Clipping. Journal of Computer Graphics Techniques (JCGT) 4, 1 (2015), 69–83.
Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014. Embree–A Ray Tracing Kernel

Framework for Efficient CPU Ray Tracing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) (2014).
Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. 2006. R-LODs: Fast LOD-Based Ray Tracing of Massive Models.

The Visual Computer 22, 9-11 (2006), 772–784.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 2, Article 33. Publication date: August 2018.


	Abstract
	1 Introduction
	2 Related Work
	3 Compressed BVHs and Leaf-Voxels
	4 Extended Surface Approximation
	4.2 Intersection

	6 Conclusion
	Acknowledgments
	References



