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Parametric surfaces are an essential modeling tool in computer aided design
and movie production. Even though their use is well established in indus-
try, generating ray-traced images adds significant cost in time and memory
consumption. Ray tracing such surfaces is usually accomplished by sub-
dividing the surfaces on-the-fly, or by conversion to a polygonal represen-
tation. However, on-the-fly subdivision is computationally very expensive,
whereas polygonal meshes require large amounts of memory. This is a par-
ticular problem for parametric surfaces with displacement, where very fine
tessellation is required to faithfully represent the shape. Hence, memory re-
strictions are the major challenge in production rendering. In this paper, we
present a novel solution to this problem. We propose a compression scheme
for a-priori Bounding Volume Hierarchies (BVHs) on parametric patches,
that reduces the data required for the hierarchy by a factor of up to 48. We
further propose an approximate evaluation method that does not require leaf
geometry, yielding an overall reduction of memory consumption by a fac-
tor of 60 over regular BVHs on indexed face sets and by a factor of 16 over
established state-of-the-art compression schemes. Alternatively, our com-
pression can simply be applied to a standard BVH while keeping the leaf
geometry, resulting in a compression rate of up to 2:1 over current meth-
ods. Although decompression generates additional costs during traversal,
we can manage very complex scenes even on the memory restrictive GPU
at competitive render times.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing

General Terms: Performance, Algorithms
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1. INTRODUCTION

Parametric surfaces are the standard modeling primitive in high-
end graphics applications. CAD-systems typically use NURBS-
surfaces to model smooth objects, whereas feature film production
tools are mostly based on subdivision surfaces with detailed dis-
placement maps. Nevertheless, generating high-quality ray-traced
images of such objects is still challenging, and with the movie in-
dustry migrating to path tracing [Christensen et al. 2006] ever more
relevant. Though it is possible to directly intersect these surfaces
using iterative approaches, such methods are prone to numerical
problems and even if these problems are solved, they cannot man-
age displacement maps.

Hence, for production rendering the surfaces are subdivided very
finely and the resulting triangles or quads are stored in an accelera-
tion structure (such as a BVH or a kd-tree) to improve ray traversal
performance. This is suitable as long as the generated hierarchy,
as well as the geometry itself, fit into main memory. However, the
resulting meshes are usually very large and the memory limit is
quickly reached even for scenes of moderate size. The limit can
be pushed by adaptive and on-the-fly subdivision or by swapping
data on demand. However, the resulting performance loss and im-
plementation overhead is considerable. Furthermore, the memory
restrictions demand a careful, and often manual, choice of the tes-
sellation levels as even slight over-tessellation results in strongly
increased memory consumption.

We propose a novel approach for compressing BVHs that allows
us to push the memory limit by up to a factor of 60 over a reg-
ular representation as tight indexed face set, and up to a factor of
16 over state-of-the-art representations. Our compression scheme is
tailored to storing BVHs of parametric patches, possibly with dis-
placement maps. The hierarchy is implicitly generated by building
a full quadtree in the parameter domain of each surface. Thereby,
we avoid indexing overhead for accessing child nodes in the BVH
and enable obtaining each node’s interval in parameter space solely
from its index in the hierarchy. This reduces the amount of required
data per BVH node to its bounding box, only.

Our compression scheme (Section 3) is based on a two level
BVH, where the upper level, containing much fewer nodes com-
pared to the lower levels, is a standard BVH. All parametric patches
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Fig. 1. Our novel compression method reduces the memory requirements for ray tracing parametric surfaces by 60 over regular BVHs on indexed face sets
and by 16 over state-of-the-art compressed structures while maintaining reasonable rendering performance. It thereby allows to render much larger scenes
in-core or on the GPU than previous approaches. We successfully applied our method to highly detailed production-grade subdivision models with sharp
creases (left) and displacement (center) as well as to NURBS models (right). All models shown were ray traced at subdivision level 8 on the GPU.
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Fig. 2. To construct our hierarchy, we first adaptively subdivide all patches
until they fulfill a flatness criterion, and then sort them into a global hier-
archy with full precision. For all these flat patches we compute an aligned
local coordinate frame and switch to our lightweight quantized and com-
pressed hierarchy.

are inserted into the top level BVH and subdivided therein. As soon
as a certain flatness criterion is reached, we switch to our highly
compressed BVH. We align the root of our compressed BVH with
the flat patch, and store the bounds of each node relative to its par-
ent. As a result, bound values are clustered and can be well pre-
dicted, which allows us to use strong quantization as well as com-
pression, exploiting the properties of the parent/child box relations.
Figure 2 depicts this two-level hierarchy.

In this paper, we propose and examine different quantization and
compression strategies reducing the memory footprint to 8 or 16
bit per node and, with even more aggressive compression, down to
4 bit per node. Compared to a representation with 6 floats (i.e. 24
bytes per node), this corresponds to a compression factor of 12 up
to 48 for the bounding geometry.

Such high compression rates allow us to represent surfaces very
finely, so that we can approximate the parameter values of the hit-
point directly on the BVH-data. That is, only the BVH-bounds are
used to intersect a ray with the scene and surface geometry is dis-
carded. Compared to other approaches that store surface geometry
in the leaves, this improves the compression rate even further.

Our approach integrates nicely into a production environment,
where ray tracing and shading are performed separately (see Eise-
nacher et al. [2013] and Laine et al. [2013]). A query to our com-
pressed hierarchy returns a patch index and parameter space coor-
dinates per hit-point and from this data, hit position, normals etc.
are then determined during shading (as described by Eisenacher et
al. [2013]). Details on this integration are given in Section 4.

Naturally, decompression comes at a cost, but our results (see
Section 5) show that our method often performs better than com-

peting compression approaches. Due to the fine subdivision, the
method generates very good results, even if the intersection points
are approximate. To visualize the precision of our method, Figure 3
shows a close-up of the T-rex model and a two-level zoom into a
visualization of the compressed hierarchy. Note that the real hier-
archy is three levels deeper than the visualized boxes. However,
if approximate hit-points cannot be tolerated in certain cases our
compressed hierarchy can still be applied while keeping the leaf
geometry. Memory savings are reduced in this scenario, but still
significant and furthermore accompanied by performance gains.

The specific contributions of our work are as follows:

— A novel method to quantize the bounds of subdivided patches
based on the orientation of locally flat and aligned sub-patches,
which achieves a peak compression rate of the bounding geom-
etry of 12 over full-precision bounding boxes.

— Different approaches for further compression of the quantized
bounds, increasing the compression rate of the bounding ge-
ometry from 12 for quantized boxes to 24 up to 48.

— An approximate evaluation scheme that integrates nicely with
how production renderers work and that allows to trace without
geometric primitives beside compressed bounding volumes,
which adds to the previous compression rates by not having
to keep leaf primitives.

— An exact solution that still provides memory savings of up
to a factor of 2. Overall compression is reduced when com-
pared to the approximate solution as leaf geometry cannot be
dropped. This scheme still provides memory and performance
gains, and is compatible to state-of-the-art traversal of para-
metric patches.

2. RELATED WORK

Parametric surfaces are an essential tool for modeling smooth con-
tinuous shapes in production rendering and CAD systems. Espe-
cially Non-Uniform Rational B-splines (NURBS) and subdivision
surfaces are widely used in practice. Catmull-Clark subdivision
[Catmull and Clark 1978] is a generalization of bi-cubic B-spline
subdivision to irregular control meshes that freed designers from
topology constraints. By repeating a set of simple subdivision rules,
the input mesh converges to a smooth limit surface. Since the ap-
proach was extended to support boundaries [Hoppe et al. 1994] and
creases [DeRose et al. 1998], subdivision surfaces with displace-
ment textures became the standard representation in movie produc-
tion, whereas NURBS are the standard in CAD applications.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 5, Publication date: February 2017.



A Compressed Representation for Ray Tracing Parametric Surfaces • 3

Fig. 3. A close-up on the T-rex’s nose illustrates how fine our hierarchy is built, and how well it adapts to the local geometry. For better presentation we
only display bounding boxs down to subdivision level 3, whereas the hierarchy used for rendering is subdivided to level 6. Also note the high accuracy at the
silhouette in the center panel.

Direct Ray Tracing of Parametric Surfaces. Early ap-
proaches for computing ray intersections with parametric surfaces
are based on numeric techniques such as algebraic surfaces [Kajiya
1982] or Newton iteration with interval analysis [Toth 1985].

These computationally expensive methods were improved by
providing good starting positions for evaluating the surfaces using
Bézier-clipping [Nishita et al. 1990] and bounding volume hier-
archies. A combination of an axis aligned bounding box hierarchy
with Newton iteration for intersecting Bézier-patches was proposed
by Geimer and Abert [2005] and later extended to NURBS sur-
faces [Abert et al. 2006]. Convex hulls as bounding volumes are
combined with Newton iteration in one of the first GPU ray trac-
ing algorithms for NURBS surfaces [Pabst et al. 2006]. Tejima et
al. [2015] apply feature adaptive subdivision [Nießner et al. 2012]
followed by Bézier-clipping for direct ray tracing on the CPU. Al-
ternative approaches subdivide the surfaces on-the-fly to generate
sub-patches that approach the actual surfaces [Rockwood et al.
1989; Benthin et al. 2007]. We compare our results to a recent im-
plementation using a shared lazy build cache [Benthin et al. 2015].

All these direct ray tracing approaches deliver high quality solu-
tions and require little memory. However, the performance of these
approaches is significantly below that of polygonal representations,
as long as the resulting polygons fit into memory [Benthin et al.
2007; Segovia and Ernst 2010]. Furthermore, all these direct ap-
proaches cannot handle displacement maps, and are thus not appli-
cable to most scenes used in movie production. In addition, efficient
Bézier-clipping requires tight ray differentials, which are difficult
to obtain for rays from light sources.

Polygonal Representations. An alternative to directly com-
puting the intersection with parametric surfaces is the rendering of
a polygonal approximation of the surfaces. A very successful exam-
ple of this approach in production rendering is the Reyes rendering
pipeline [Cook et al. 1987]. Parametric surfaces are subdivided and
finally split into micro-polygons that are then shaded to produce the
final image. This works particularly well for subdivision surfaces
with displacement mapping, which are difficult to handle with di-
rect evaluation methods.The introduction of the hardware tessella-
tion unit enabled efficiently mapping the Reyes split stage and the
evaluation of the limit surface to the graphics hardware [Nießner
et al. 2012; Schäfer et al. 2014]. While these approaches work
well for rasterization, rendering with global illumination requires
accessing all scene geometry and there is a strong demand in in-
dustry to combine the Reyes pipeline with ray tracing [Christensen
et al. 2006; Eisenacher et al. 2013]. Therefore, all parametric sur-

faces in a scene are typically subdivided and converted into dense
polygonal meshes that represent the original surface, possibly with
displacement. Although the resulting meshes can be efficiently ren-
dered using acceleration structures, the memory requirements for
storing micro-polygons and bounding nodes are quickly expanding
beyond the amount of available main memory. This necessitates
out-of-core techniques [Pharr et al. 1997] as well as caching [Wald
et al. 2007; Benthin et al. 2015], LOD [Christensen et al. 2003;
Yoon et al. 2006] and compression schemes to handle the amount
of data.

BVH Compression. Closely related to our work is the hierar-
chical quantization schemes on point clouds on bounding spheres
[Rusinkiewicz and Levoy 2000] and kd-trees [Hubo et al. 2006],
where child nodes are quantized locally in the coordinate system of
the parent nodes.

As shown by Yoon et al. [2006] as well as by Christensen et
al. [2006] ray tracing performance drops by at least two orders of
magnitude due to swapping when the scene does not fit into mem-
ory any more. Yoon et al. [2006] propose to reduce bandwidth by
stopping BVH traversal as soon as the ray diameter is reached.

Mahovsky [2005] proposed a reduced precision integer BVH
with a compression rate of 3:1 to 4:1. He used an 8 or 4 bit lin-
ear quantization of the coordinates relative to the parent bounding
box. Segovia and Ernst [2010] use quantization for both vertex po-
sitions and bounding volumes resulting in a total compression rate
of 4:1 to 8:1.

Our concept of using a two-level hierarchy has also been pre-
viously proposed by Lauterbach et al. [Lauterbach et al. 2008]
where a kd-tree is built on top of a triangle strip hierarchy. In total
they achieve a compression rate of 5:1 to 6:1 on arbitrary triangle
meshes. Embree [Wald et al. 2014] provides an implementation of
this scheme that is tailored to subdivision surfaces with a compres-
sion rate of up to 16:1. We compare our approach to this method in
Section 5. Kim et al. [2010] cluster BVH nodes and use arithmetic
compression for each cluster. While they achieve a moderate com-
pression rate of 10:1, they always need to decompress the whole
cluster even if only a single node is traversed by the ray. The HC-
CMesh algorithm [Kim et al. 2010] encodes bounding boxes us-
ing six extremal vertices and achieves a compression rate of 8:1 (4
bytes per node). The minimal BVH [Bauszat et al. 2010] also uses
a two-level hierarchy, where the lower nodes are compressed to two
bits storing if the two boundary planes in split direction are reduced
by a constant factor and always splitting a node in its largest extent.
While the compression rate is similar to our approach, the constant

ACM Transactions on Graphics, Vol. 36, No. 1, Article 5, Publication date: February 2017.



4 • K. Selgrad and A. Lier et al.

factor reduction leads to over-sized bounding volumes that signifi-
cantly degrade performance.

All of these approaches use quantization to reduce memory con-
sumption, and apply further ideas to compress bounding values,
indices, or mix BVH and triangle data to achieve better efficiency.
However, most of these approaches have a dramatic impact on per-
formance, and/or can only achieve moderate compression rates.
The reason is probably that all these approaches compress the en-
tire BVH of a scene, which is much harder than concentrating to
flat, aligned patches as we do. Furthermore in a single BVH for an
entire scene, one cannot rely on a full hierarchy (as we do), which
makes it necessary to take care of indices.

Approximate Methods. Novák and Dachsbacher [2012] re-
place BVH sub-trees by rasterized height fields. These RBVHs are
similar to our approach in the sense that they switch to an alter-
native surface representation as soon as geometry-clusters get suf-
ficiently flat. The main difference in memory consumption is that
our hierarchy implicitly stores parameter values, whereas the height
fields of RBVHs are a resampled surface representation. Any sur-
face attributes (such as texture coordinates, but also normals etc.)
need to be stored with this representation, see Section 5 for a com-
parison to our method.

Another related approach are GigaVoxels [Crassin 2011]. Using
this method, scenes are represented as voxel grids and any origi-
nal geometry is discarded. The voxel grid is stored hierarchically,
which allows efficient cone tracing with impressive performance.
Our approach is comparable in that it also relies on tiny, but approx-
imate, volumes at leaf level with our approximate version. How-
ever, our hierarchy is not bound to a global grid, but spans along the
geometry, very much like object oriented BVHs versus octrees. Gi-
gaVoxels integrate level-of-detail and caching easily, whereas our
approach is tailored towards higher quality and to be more robust
under animation.

3. PATCH-ALIGNED BVH COMPRESSION

In the following we describe the motivation behind our BVH repre-
sentation and how its structural properties are exploited to achieve
compression rates beyond previous methods. Our algorithm builds
this structure from a set of input patches which, in this paper, are
Catmull-Clark subdivision surfaces with displacement textures and
NURBS-patches. These are the most important patch types in prac-
tice, however, our algorithm is by no means limited to these.

3.1 Two-Level Hierarchy

Our construction starts by generating a standard, full-precision
BVH and inserting all parametric patches as leaves. It then applies
top-down subdivision of the input primitives on a patch-by-patch
basis, thereby extending the full-precision BVH.

The key insight we use is that, as soon as a patch is even moder-
ately flat (see Section 3.2) and well aligned (see Section 3.3), fur-
ther subdivision yields surfaces with predictable bounding boxes.
We exploit this by using a local coordinate frame that is aligned by
a projection to the patch such that the frame’s origin maps to one
corner of the patch, and the basis vectors span the patch’s extent
along (u, v), i.e. we evaluate the limit positions at the corners and
use the two edge vectors in positive u and v direction. In this frame,
and under the assumption of flatness, subdividing the patch at, e.g.,
u = 1

2
yields x-bounds for the resulting child nodes close to 0, 1

2
and 1 (v and y analogous), as shown in Figure 4.

Consequently, when taking advantage of this fact, it is possible to
store the bounds using only very few bits, without losing too much

Fig. 4. For reasonably flat patches subdivision in (u, v) yields predictably
distributed values in patch-local (x, y) (see Figure 5).

precision. This observation is the basis of our compression scheme
as detailed in the remainder of this section.

During the subdivision of a possibly displaced patch we test each
generated sub-patch for flatness, i.e. our subdivision is adaptive. As
soon as a sub-patch is considered sufficiently flat (see Section 3.2),
we switch to our compressed BVH (CBVH) representation, i.e. we
enter a leaf node in the top-level tree. This leaf stores the local sys-
tem of the CBVH that represents the further subdivided and com-
pressed patch. Within each CBVH, bounding box coordinates are
stored relative to each node’s parent’s bounds while keeping the
orientation of the local root, i.e. all nodes in a single CBVH are
in the same coordinate frame (see Figure 2). During this process
we employ full-precision arithmetic to subdivide the sub-patches
and map the resulting bounding box relative to the bounds of the
parent node. This fraction is then quantized and stored in our hier-
archy. Thus, the subdivision for a given sub-patch is first stored in n
levels of full precision, followed by c levels of our compressed rep-
resentation, denoted Snc in the following (e.g. S for three levels
of full precision followed by two levels of compressed data).

We encode the CBVH such that it exploits the predictable config-
uration of child-bounds in two ways: by using strong quantization
to store the bounds (see Section 3.4), and by jointly compressing
the bounds of the four child-nodes (see Section 3.5).

Note that as soon as we switch to our CBVH, we no longer use
fully adaptive subdivision, but fully subdivide until a certain level.
The maximum subdivision level can be chosen independently for
each CBVH such that all child boxes reach a given accuracy thresh-
old, i.e. adaptive per CBVH, e.g. until the resulting patches cover
an area below a predefined threshold. Therefore our whole struc-
ture is fully adaptive in the upper full-precision levels of our BVH,
while the CBVH can adapt the maximum subdivision level. This
is a reasonable compromise, as it allows us to use implicit address-
ing in the CBVH, which frees us from storing indexing information
such as pointers.

3.2 Flatness of Sub-Patches

We determine the flatness of a patch by evaluating its cone of nor-
mals [Shirmun and Abi-Ezzi 1993]. For displaced surfaces this en-
tails sampling the height field at the desired target resolution. A
patch is then considered flat if the opening angle of this cone, θ, is
below some threshold: θ < θflat.

This flatness threshold should be kept small to ensure high fi-
delity of the local frame. On the other hand, if the threshold is cho-
sen too conservatively, memory savings can drop as compression is
applied only at the very bottom of a patch’s BVH. However, even
conservative values of θflat result in considerable reduction because
of the exponential growth in the number of leaf nodes. Section 5
provides an analysis of how this choice affects image quality, mem-
ory consumption and render times.

ACM Transactions on Graphics, Vol. 36, No. 1, Article 5, Publication date: February 2017.



A Compressed Representation for Ray Tracing Parametric Surfaces • 5

xmax(B10)

xmax(B00)

ymax(
B00

)

ymin
(B10

)

B00
B01

B11B10

Fig. 5. The distribution of the xmax values of the two left child boxes (con-
figuration shown left) in relation to bounds of the parent node is shown in
the histogram (right). Note that almost all values are very close to the pre-
dicted value of 1

2 . The histogram is built on the entire T-rex model shown
in Figure 1, subdivided to level 6, including displacement. The illustration
on the left corresponds to the B10 sub-patch shown in Figure 4.

3.3 Alignment of Sub-Patches

To ensure predictable boundaries during subdivision, even for
sheared or trapezoidal sub-patches, the local frames stored at the

u0

u1

v1
v0

root of the oriented CBVHs are not re-
stricted to rotations, but can be arbitrary pro-
jective mappings. To this end we first com-
pute a simple local non-orthogonal, but nor-
mal, frame F by averaging the sub-patch’s
control vectors, as shown in the inset image.
Based on this frame we compute a projec-

tion P that maps the u and v components to the unit square. We
then traverse the patch’s child nodes and accumulate their bounding
volumes in the projected space, potentially yielding (u, v)-bounds
outside the unit square. These bounds can be mapped back to the
unit square with a simple scale and bias transform, S. The result-
ing local, projective transformation that the sub-patch’s CBVH is
expressed in is thus P ′ = SPF .

Using P ′ we then recompute the bounding boxes of this CBVH
and also accumulate tight bounding volumes in the global frame to
avoid introducing overestimation at the frame transition. The upper,
full precision part of our BVH then uses these volumes in the global
frame when computing bounding volumes for its nodes.

The remainder of this section describes, starting from a local and
properly aligned frame, how we reduce the memory footprint of our
BVH by quantizing and compressing inner nodes and not storing
primitives in the leaf nodes.

3.4 BVH Quantization

The first part of our proposed compression scheme applies quanti-
zation to individual bounding box components in a patch’s local co-
ordinate frame. Subdivision of a (sub-) patch at

(
1
2
, 1

2

)
yields four

new bounding volumes in the local frame: B00, B01, B10, B11. As
exemplified in Figure 5, the distribution of their individual bounds
is heavily non-uniform (note the non-linear scale) and we assume

(a) E[xmin(Bij)]=
j
2

(c) E[xmax(Bij)]=
j+1

2

(b) E[ymin(Bij)]=
i
2

(d) E[ymax(Bij)]=
i+1
2

(1)

where i, j ∈ {0, 1}.
Given these expected values we then compute the deviation of

each bound, e.g. x∆
max(Bij) = xmax(Bij) − E[xmax(Bij)], and ap-

ply a quantization function, Q, i.e. xQmax(Bij) = Q(x∆
max(Bij)).

Note that this function must produce conservative bounds to avoid
underestimation which would result in false negatives (i.e. holes)
during tracing. Therefore our quantization function selects the ap-

x, y

z

Fig. 6. Q and C Quantization-pattern for the x and y coordi-
nates, with C’s two-bit representation of the z interval. The three-bits
in x and y encode (−1.0,−0.2,−0.01,−0.001, 0.001, 0.01, 0.2, 1)
while the two-bit values used for z represent the intervals
([0.0, 1.0], [0.0, 0.7], [0.3, 1.0], [0.2, 0.8]).

Fig. 7. Overestimation results in splits which are not captured well us-
ing the quantization. The left image shows that splits close to the expected
value are captured faithfully, while splits which cross quantization bound-
aries produce larger boxes. Note how the center of the overestimated bounds
(right) also no longer captures the sub-patch’s center.

propriate bounds of each quantization interval (bin) for minimal
(Q−), and maximal (Q+) extents, i.e. rounds down or up.

In the following we show how the expected value and standard
deviation of x1 = xmax(B00) and x2 = xmax(B10) behave un-
der quantization. For the dataset shown in Figure 5 we computed
E[x1] = 0.5038, and σx1

= 0.016. We exploit the low variance
by distributing our quantization bounds closely around zero, sim-
ilar to a logarithmic distribution. Because we only use a few bits
our logarithmic quantization function (QL) is implemented by a
short lookup-table (see Figure 6). Figure 8 shows the distribution
of QL(x1) and QL(x2), for increasing subdivision levels. Note
the histogram’s non-linear scale and how the strong focus close to
the original expected value is clearly present with our logarithmic
quantization. For further details on different quantization patterns
see our supplemental material.

Our non-uniform quantization captures changes around the ex-
pected value with high precision, but larger deviations map to
conservative, low resolution bounds. This results in overestimated
boxes, and thereby skews the prediction as the center of such boxes
no longer coincides with the expected value. Figure 7 gives an il-
lustration of this effect. This is also reflected in the mean and stan-
dard deviation of the samples. Referring to the example above we
computed E[QL(x1)] = 0.5031 and σQL(x1) = 0.028. It can be
seen that the variance increased, but it is still very low and the error
introduced is marginal. See Section 5 for a more thorough analysis.

We typically use a quantization to three or two bits, resulting
in eight or four possible values. The standard quantization pattern
used for all renderings shown in this paper (and the previous anal-
ysis) is based on a three-bit non-uniform quantization for the x and
y components and two bits for the (already flat) z components, ab-
breviated Q. Its x and y bounds are illustrated in Figure 6. This
representation consumes 8 bits of memory per box-vertex and thus
2 bytes per local CBVH bounding box. Since we apply full subdi-
vision for each CBVH indexing is implicit and we arrive at 2 bytes
per node, which is in contrast to 24 bytes for implicitly addressed
single precision nodes, i.e. a compression factor of 12.
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Fig. 8. Distribution and correlation of the xmax(B00) (horizontal in sub-
plots) and xmax(B10) (vertical in sub-plots) fragment bounds illustrated in
Figure 5 (left). The top row shows the results for uniform subdivision with
3 levels of uncompressed BVH nodes and 1 level using CBVHs; the bottom
row shows 2 levels of uncompressed BVH nodes as well as 3 levels using
CBVHs. Left column: reference distribution without quantization; middle
column: quantization using Q; right column: compression using C.

3.5 BVH Compression

The second part of our compression scheme is jointly encoding
bounding-box components of sibling nodes. In the following we
present two compression methods which are orthogonal to applying
quantization and can be used to further increase the overall com-
pression rate.

Slab Compression. The basic structure of our slab compres-
sion is already hinted at, e.g., in Equation 1 (a) which defines two
similar expected values,

E[xmax(B0j)− xmax(B1j)] ≈ 0. (2)

The geometric interpretation is as follows: The subdivision of a
patch P yields four sub-patches in a 2× 2 grid, i.e. Bij . Therefore,
there are two sub-patches along the v domain (which corresponds
to the y axis in the local frame), i.e.Bi0 andBi1. It can be expected
that the x bounds of those two sub-patches, e.g. xmin,max(B0j),
are very similar. Figure 5 illustrates this relation and shows a his-
togram of the distribution of the presented values (xmin(B00) and
xmin(B10)), based on an analysis of the T-rex model shown in Fig-
ure 1, including displacement textures. Figure 8 indicates the cor-
relation of these values (left row) under quantization (middle row)
and compression (right row). Note how the values are distributed
along the diagonal, indicating strong correlation which is captured
nicely with our compression scheme.

Similarly to previous computations we set x1 = xmax(B00) and
x2 = xmax(B10) and determined E[x1 − x2] = 8.97 · 10−5 with
σ = 0.020. We exploit this similarity by conservatively choosing
the larger (i.e. conservative) bound to represent both, e.g.

xCmax(B0j) = max
(
xQmax(B0j), x

Q
max(B1j)

)
(3)

and proceed analogously for the other bounding values. We call
this method ‘slab compression’ because we effectively fit four slabs
around the sibling boxes, as illustrated in Figure 9 (a) and (b). This
yields a total of 8 bounds for four boxes, which should be com-
pared to storing 4 bounds per box, increasing the compression rate

by a factor of two. Using the same quantization as with Q and
adding slab compression we arrive at 8 bits per local CBVH node,
which results in an overall compression factor of 24. We denote this
particular combination C.

In contrast to the Q quantization (where both z-bounds were
stored with 2 bits, each), the C compression only leaves two
bits for the whole z-approximation. Figure 6 illustrates how the z-
part of a compressed value is interpreted relative to the height of
the parent-box. Figure 8 exemplifies how well the original bound-
ing values are captured using C (note the non-linear scale). The
slight distortion of the distributions shown is a result from overes-
timation as described in Section 3.4.

Half-Slab Compression. Even further compression can be
achieved by considering even more similarities. Given the par-
ent box BP of the four boxes Bij , Figure 9 (a) shows that, e.g.,
xCmin(Bi0) ≈ xmin(BP ). This similarity holds for all bounds of BP

to the respective bounds of the sub-boxes Bij . This scheme, using
the slabs-analogy introduced above, corresponds to only storing the
inner part of each slab, see Figure 9 (c) and (d). Concrete evalua-
tion on the T-rex model yields that E[xmin(BP ) − xCmin(Bi0)] =
3.79 · 10−5 with σ = 0.038.

This yields another factor of 2 in compression rate, and appli-
cation on top of C, which we denote H, results in a 4-bit
representation for local CBVH nodes, which corresponds to a com-
pression rate of 48. Section 5 provides a comparison of the image
quality, rendering performance and memory savings achieved by
these compression schemes.

(a) (b) (c) (d)

Fig. 9. Adjacent child bounding boxes can be expected to have similar
bounds on one axis and those are then combined to slabs. (a)B00 andB10,
as well asB01 andB11 exhibit similar bounds on the x axis, while (b)B00

and B01, as well as B10 and B11 share bounds on the y axis. (c) Further-
more, a node’s parent-box can also contribute a conservative estimate which
is exploited using half-slab compression. (d) Complete bounds are formed
by the interaction of two levels of such a CBVH.

3.6 Traversal Scheme

Ray traversal using our data structure is a two-step process which
we implemented for GPUs and CPUs. In the first phase the top-
level tree is traversed until a transition node to the compressed
BVH is encountered. Using the information in this node the ray
data is transformed to the local frame and we compute the intersec-
tion with the quantized nodes while decompressing on-the-fly.

Our traversal on the GPU is implemented according to state-of-
the-art techniques [Aila and Laine 2009]. We keep traversing the
top-level tree and speculatively collect further transition nodes as
long as there are threads which have not found a transition node,
yet. Then all threads collectively enter the traversal of the quantized
hierarchy, thus avoiding divergence that would otherwise greatly
impact performance when different node types are intersected in
the same warp. We dynamically fetch new rays as soon as at least
12 rays (out of 32) in a warp have terminated. On the CPU our
traversal is integrated in Embree [Wald et al. 2014], making heavy
use of SIMD instruction sets and wider trees.
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During traversal of the quantized part of the hierarchy we keep
track of the current node’s bounds which are stored incrementally
with our method. The parameter interval covered during traversal
is implicit in the uniform subdivision of each compressed BVH and
is consequently not tracked, but directly computed for leaf nodes.

Since we do not store the leaf mesh for our approximate method,
we assume that the surface is hit as soon as a leaf of our hierarchy is
reached and we approximate the parameter (u, v) of the hit-point.

The fastest approximation is to return the
center of the parameter interval as result.
Better results are achieved by approximating
the (u, v)-coordinates at the hit-point on the
surface with the bounding box’s z-median
as shown in the inset image. There, the ray
(blue) is intersected with the z-median sur-

face of the box. Hit points outside the parameter interval of the box
are clamped (orange).

If the original geometry is still available (e.g. the subdivision
cage or NURBS control points) it is also possible to evaluate the
four points spanning the parameter interval on-the-fly, and inter-
secting the ray with the bilinear patch. As detailed in Section 4,
a deferred shading stage can be exploited to provide further com-
putations (such as linear approximations or complete evaluation)
while providing a coherent execution path. Furthermore, the hit-
point found can also be used as a starting point for iterative meth-
ods [Abert et al. 2006]. Our compression is also compatible with
keeping the full-precision vertex positions of the leaf mesh to com-
pute exact intersection points. Using our compression scheme in
this way does not provide as strong a compression as when the leaf
mesh is dropped and approximated by our oriented boxes, but does
remove the potential for rendering error due to box-approximation.

However diverse the options of on-the-fly and deferred evalua-
tion, we would like to stress that at subdivision level six the ap-
proximation using interpolation on the leaf node’s (u, v) bounds
(see inset image above) yield very accurate results, as exemplified
by Figures 1 and 3 as well as by the images shown in Section 5.

4. USE IN PRODUCTION ENVIRONMENTS

Our method integrates nicely into existing production rendering
pipelines. We focus on Catmull Clark subdivision surfaces with
high frequency detail stored in displacement maps.

Ptex. The state of the art for storing high resolution material and
surface detail in production rendering is Ptex [Burley and Lacewell
2008]. Ptex uses an implicit parametrization on a per face basis
as opposed to a global (u, v)-parameterization. This makes our
scheme an ideal companion: Ptex frees us from storing explicit
(u, v) coordinates at the CBVH root nodes and we provide the
patch number and parameter space location needed to fetch data
from the textures.

Decoupled Shading. Similar to Eisenacher et al. [2013], ray
traversal and shading are two separate stages in our rendering
pipeline. Using our compressed BVH we can perform ray traversal
even for large production models on the GPU. Output of the traver-
sal are a patch-id and (u, v)-coordinates per ray, but no normal (nor
other attributes). We thus use feature adaptive subdivision [Nießner
et al. 2012] to evaluate the point at this (u, v)-position and com-
pute the normals of the displaced surface analytically using the ap-
proach described by Nießner and Loop [2013]. This step is only a
small fraction of the trace time and thus does not contribute much
to rendering time. The re-evaluated surface point will be slightly off
the original ray, but we can use it well for further shading. Exam-

Fig. 11. Barbarian: a displacement mapped model rendered using only
box approximation with motion blur and deferred shading. Note the de-
formation of the face as the barbarian’s mouth opens.

ples of this approach for rendering subdivision with displacement
are shown in Figure 1, 3 and 11. Higher resolution images can be
found in our supplemental material.

Application as Seed for Direct Methods. Methods for the
direct intersection of parametric surfaces are prone to numerical
problems and rely on good starting values for computing accu-
rate results (under the assumption, that no displacement map is
applied). Our approach can be used as a light-weight tool to pro-
vide such well behaved starting points to these methods. Given the
quite accurate starting point, a single Newton iteration would suf-
fice. This single iteration leads to a very small overhead in the shad-
ing stage to evaluate the additional surface point and the two addi-
tional derivatives. Compared to directly using the (u, v)-parameters
of the starting point, this only doubles the cost of the hit-point and
normal calculation. The accurate starting point can also reduce arti-
facts due to divergence of the Newton iteration [Abert et al. 2006].

Level of Detail. Each approximation that is employed to re-
duce memory consumption possibly introduces error, and might
affect rendering performance. Section 5 evaluates our method with
regard to these characteristics. The variety of different settings pro-
posed in Section 3 also provides a reasonable basis for level of de-
tail (LOD) approaches: while the fidelity of our representation de-
grades under half-slab compression, results are still appropriate for
objects when quality requirements are reduced due to LOD. Sim-
ilarly, the flatness threshold, which influences where compression
starts, can be varied continuously with the LOD coefficient. The
same holds for the maximum level to which the CBVH is build.
This is guided by a maximal area allowed to be covered by the leaf
which can be varied analogously.

Motion Blur. Our method also nicely extends to motion blur.
The common solution is storing two bounding boxes per node
and interpolating between these boxes during traversal, and to pro-
ceed similarly for leaf geometry. Our approach supports the same
method. As a consequence of keeping the BVH of two key frames
we also store two local frames at transition nodes and, in addition to
interpolating between CBVH boxes, also interpolate their frames.
We have implemented this scheme by enforcing that the two key
frames hold transition nodes at the same positions in the BVH. Fig-
ure 11 shows an image rendered with our approximate method and
motion blur. Note the deformation of the character’s face. The re-
spective key frames can be found in our supplemental material.
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(a) (b) (c) (d) (e) (f)
Fig. 10. Error in (u, v)-difference for a close-up to the T-rex’s nose between different quantization settings and the triangle reference (generated by 7 levels
of uniform subdivision). Images (a)-(d) use uniform subdivision to S (see Section 3.1) and rely only on our box-approximation (see Section 3.6) to estimate
the intersection point. (a) box reference: RMSE 0.034, (b) Q: RMSE 0.048, (c) C: RMSE 0.062, (d) H: RMSE 0.069, (e) C using adaptive
subdivision with θflat = 72◦: RMSE 0.042, and (f) final result using (e).

5. EVALUATION

In this section we compare ray tracing using our compressed struc-
ture to different, recent methods in terms of image quality, ren-
dering time and memory requirements. We have implemented our
method for both GPUs (using CUDA, based on the findings of Aila
and Laine [2009]) as well as CPUs (exploiting the available SIMD
instruction sets), where we integrated it in the open source Embree
ray tracing framework [Wald et al. 2014] (our branch is available
online1). Therefore we compare to both GPU and CPU-based ap-
proaches:

Q332, C332, H332 Variants of our approximate method, imple-
mented with state-of-the-art CPU and GPU techniques.

NAIVE A naive pre-tessellation of the subdivision model to the
same levels as with our approach and rendered with state-of-
the-art ray tracers using CUDA [Aila and Laine 2009] on the
GPU and Embree [Wald et al. 2014] on the CPU.

RBVH Rasterized BVHs [Novák and Dachsbacher 2012] replace
sub-trees of the BVH with height field atlases rasterized on
the GPU. After rasterization the pre-tessellated triangle data is
no longer required for rendering and can be discarded. During
BVH traversal the method can switch to traversing the sampled
height data. To support parametric patches we extended this
method to also keep the parameter values of the patches which
would otherwise be lost.

PREGEN A pre-tessellated and losslessly compressed method,
very similar to Lauterbach et al. [2008], but tailored to para-
metric patches. Vertices are stored tightly packed and in groups
such that low-precision indices can be used to index a patch’s
vertices, thereby removing the need to store any stripification
information. As the method is integrated in Embree the imple-
mentation is highly tuned using SSE and AVX data layouts and
intersection routines.
We also provide comparison to a GPU implementation which
is tuned the same way as our NAIVE GPU version is.

PREGENC Our exact variant (see Section 3.6), using oriented,
quantized and compressed bounding boxes with a vertex layout
inspired by Embree’s PREGEN.

CACHED A lazy-build scheme exploiting a shared cache to keep
on-the-fly constructed sub-trees. It is tailored to modern many-
core architectures [Benthin et al. 2015] and integrated into Em-
bree, making use of, e.g., SSE and AVX. Its performance is
coupled to the shared cache’s size.

1github.com/kiselgra/embree-compressed
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Fig. 13. Memory requirements in comparison to image quality (see also
Figure 10) and rendering time (see also Figure 16) for flatness-adaptive sub-
division, when rendering the close-up shown in Figure 10 (f). With increas-
ing threshold-angle θflat, i.e. more relaxed flatness, memory consumption
drops from 24 MiB to 5 MiB for the T-rex model shown in Figure 1 while
the average error increases from 4% to over 10.2%. Render-time also drops
from 210 ms to 115 ms.

5.1 Image Quality

Our proposed method supports compression with two different tar-
gets: very strong compression that can introduce overestimation
due to box-approximation and still strong, but lossless compression
that does not introduce any rendering error. In this section we show
that rendering error under lossy compression is not as strong as
with common methods, even while providing better compression.
We evaluate the quality achieved using our technique by compar-
ing the (u, v)-parameters obtained to those on a highly tessellated
mesh (called ‘triangle reference’) and contrasting the results to us-
ing RBVH. Our method uses bounding boxes in patch-local coordi-
nate frames to approximate the actual displaced parametric surface.
We refer to this as an oriented, projective, object-space voxeliza-
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Table I. Rendering error in (u, v)-space, performance and memory
footprint of three versions of RBVH compared to configurations of
our method that partly share those characteristics. Values compared
in Figure 14 are marked.

Method RMSE Performance Memory
[Mrps] [MiB]

Figure 14(a) RBVHhigh ∗ 0.071 91.2 2195.3
Figure 14(b) RBVHmed 0.084 ∗ 201.9 889.2
Figure 14(c) RBVHlow 0.110 340.9 ∗ 205.9
Figure 14(f) C S 0.062 120.9 ∗ 186.4
Figure 14(d) C S ∗ 0.073 138.4 95.6
Figure 14(e) C S 0.092 ∗ 191.2 18.6

tion. Even though we change the orientation of this voxelization
only once, a non-quantized representation can already introduce
overestimation. For a cleaner evaluation we therefore also con-
sider the difference of this representation (called ‘box reference’) to
the triangle reference, as well as the difference of the quantization
schemes.

Figure 10 indicates the error introduced by different quantiza-
tion settings. The most pronounced areas are where different (u, v)-
coordinates meet at an edge. However, as shown in Figure 10 (f),
the resulting image is still of very high quality. Our supplemental
video shows this evaluation over the entire model and under anima-
tion.

Figure 12 describes the distribution of overestimation for the
T-rex model shown in Figure 1. The model was subdivided three
times using full-precision, and then another three times using
CBVHs (i.e. S). Note how the overestimation of the quantized,
compressed and half-slab compressed variants can also be found in
Figure 10 (b), (c) and (d). This is mostly noticeable towards (u, v)-
discontinuities and silhouettes where the original patch is slightly
enlarged (e.g., see Figure 10 (d)).

Even though our compression scheme introduces an error our
supplemental video demonstrates that, overall, it is very low and,
most importantly, does not introduce noise or inter-frame inconsis-
tencies. This is also clearly visible in the visualization of the direct
(u, v)-coordinates obtained from our traversal.

Furthermore, Figure 13 shows that with increasing threshold-
angle θflat memory requirements and render time drop while the
rendering error grows. Note that, in contrast to the uniform evalu-
ation provided in Section 5.2, the figure presents the memory foot-
print of adaptive subdivision for the close-up to the T-rex’s nose,
see Figure 10 (f).

In settings where no rendering error is tolerable our compression
scheme can still be applied to the hierarchy while keeping leaf tri-
angles. As shown in Section 5.2 and 5.3 memory consumption is
much increased in contrast to using our approximation, but still re-
duced to around 60% compared to PREGEN, while also yielding up
to 40% increase in traversal performance on the GPU. Note, how-
ever, that the images shown in Figures 1, 3, 11 and 10 are all ren-
dered using box-approximation, only. As can be seen in Figure 10,
using half-slab compression introduces stronger overestimation at
patch-boundaries and we thus usually rely on C when using our
box-approximation.

A different approach to approximate scene geometry is using
RBVH [Novák and Dachsbacher 2012]. The approach is similar to
our method in that a two-level hierarchy is employed, where a tran-
sition to an approximate representation is introduced as soon as the
geometry contained in a sub-tree is flat enough. In contrast to our
approach, RBVH uses rasterized height fields in a local frame and
stores them in texture atlases. Therefore, image quality is mainly

(a) RBVHhigh (b) RBVHmed (c) RBVHlow

(d) ≈ quality (e) ≈ performance (f) ≈ memory

Fig. 14. We show equal quality 14(d), performance 14(e) and mem-
ory 14(f) comparisons of our method to RBVH at three quality levels. Full
details are listed in Table I.

driven by the resolution of the texture atlases (and the flatness cri-
terion), not directly by subdivision level.

To evaluate this method in the context of parametric patches we
extended the implementation of Novák and Dachsbacher [2012] to
also store patch-ids and (u, v)-parameters, allowing us to evalu-
ate the limit surface position and normal during shading. For com-
parison we chose three RBVH quality settings, comparable to our
method’s rendering error and speed. The top row of Figure 14 indi-
cates the rendering error of three different versions of RBVH. The
high-quality RBVHhigh version (a) exhibits a similar error as our
method in (d), C S, which both takes up less memory and
renders faster. The medium-quality RBVHmed version (b) renders
a little faster than our low-quality version (e), C S, which
also produces stronger rendering error, but is much more com-
pact. Finally, the low-quality RBVHlow version (c) requires a sim-
ilar amount of memory as our high-quality version (f), C S.
However, even though RBVHlow performs better than all other ver-
sions, the rendering error is severe. Table I also demonstrates that
using our method the rendering error can be much reduced (e.g.
compare high quality C S with RBVHhigh, showing similar
performance, and RBVHlow, of comparable size).

5.2 Memory Requirements

Our main concern addressed by reducing the memory footprint of
BVH and primitive representations is to be able to keep the ray
traversal-part of a decoupled shading system (see Section 4) as lo-
cal as possible. By this we mean that, regardless of the working
set required for shading, we strive to achieve a compact enough
representation to allow ray traversal on the GPU (when otherwise
the computation would have to be run on the host CPU) or in-core
(when otherwise virtual memory thrashing would bring down sys-
tem performance). Therefore our analysis of required memory fo-
cuses on the memory required during ray traversal. We also list
memory requirements during shading, showing that our method
only adds a small fraction to it. To ensure equal tessellation levels
across all considered methods we compare uniformly subdivided
patches. The resulting relationships carry over to adaptive subdi-
vision with equal levels. To this end we will show that, for reason-
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Fig. 15. Memory requirements (in MiB) for the BVH and leaf data of the
reference approaches (red) described at the outset of Section 5 compared
to different configurations of our C method (green: with full precision
subdivision until level 2; blue: until level 3). Measurements were taken on
the T-rex shown in Figure 1, consisting of 5812 patches. Shaded regions
span the difference of the corresponding Q (top) and H (bottom)
versions. Note the logarithmic scale, and that a full table can be found in
our supplemental material.

ably finely tessellated surfaces, both the lossy as well as the lossless
compression we propose require significantly less memory as com-
pared to most established methods. The following section will then
show how these compare in terms of rendering performance and
demonstrate that the constant-memory solutions can entail severe
performance drawbacks.

Figure 15 indicates the development of memory requirements for
the different methods described at the outset of Section 5 as com-
pared to our method with different configurations. The figure shows
the complete memory footprint of the respective methods for traver-
sal (i.e. including the top-level, local frames, and, if applicable, leaf
geometry). It can be seen that, with the exception of on-the-fly tes-
sellation (CACHED) and RBVH, memory grows exponentially in all
cases. Figure 15 demonstrates that there is already a strong com-
pression in Embree’s PREGEN implementation (red) as compared
to the NAIVE representation (pink). The figure also shows two lines
representing C Sn (green) and C Sn (blue) with the corre-
sponding half-slab compressed (H) and quantized-only (Q)
versions at the lower and upper limits of the shaded regions, respec-
tively. The compression rate of both of these instances of Q is
already as strong as the difference between NAIVE and PREGEN,
while using compression decreases memory requirements by an-
other factor of 2. Half-slab compression can be used to reduce this
by yet another factor of 2. Please note that our supplemental mate-
rial contains a full tabulation of the data shown in Figure 15, for dif-
ferent subdivision and compression levels both, for the T-rex shown
in Figure 1, consisting of 5812 patches, as well as for the barbarian
shown in Figure 11, consisting of 51949 patches.

From Figure 15 it is visible that for higher subdivision levels,
such as required for close-ups or highly detailed and displaced
setups, the compression factor achieved using our approximate
method is 16 : 1 over lossless state-of-the-art compression (and
up to 60 : 1 to a naive indexed face set). As shown in the evaluation
of image quality above, this compression also introduces an error
due to overestimation, however, the error is minor and well below
that of competing methods. Even for settings in which no error can
be tolerated, our compression scheme can be used while keeping
exact, full precision vertex data (PREGENC) and still achieve close
to 2 : 1 compression over the state of the art.

Table II. Breakdown of the memory requirements (in MiB) of
our method, divided by the different stages of a decoupled shad-
ing system (see Section 4). The first column uses our compressed,
approximate method, C, followed by using our method with
leaf triangles and aggressive half-slab compression, PREGENH,
and using NAIVE BVH construction. The upper part lists require-
ments during ray traversal, the lower part data required during
shading, including the structures used by feature adaptive subdi-
vision (FAS) [Nießner et al. 2012] used to evaluate limit position
and normal.

Method C PREGENH PREGEN NAIVE

Level S S S S
Traversal

Top level 20.4 5.6 182.1 2728.0
Matrices 45.4 5.7 0.0 0.0
Bottom level 29.8 15.1 0.0 0.0
Leaf geometry 0.0 281.0 281.0 1013.0

Sum 95.6 307.4 463.1 3741
Shading

FAS 65.2 0.0 0.0 0.0
Displacement 300.0 0.0 0.0 0.0
Color texture 1300.0 1300.0 1300.0 1300.0

Sum 1665.2 1300.0 1300.0 1300.0

However, our method is not as effective for low subdivision lev-
els, which also holds for when keeping full precision vertex data
along our compressed structure (PREGENC). Using PREGENC is
sensible starting from level 4 (e.g. with half-slab compression,
PREGENH, at S) where the same amount of memory is used
and traversal time using our method is below PREGEN. Starting
from level 5 PREGENC performs much better as PREGEN, while
still providing a compression rate above 1.5 : 1. Furthermore, start-
ing from level 5 (e.g. S) the initial overhead (matrix storage) of
our approximate method, C, pays off and strong compression is
achieved.

Table II gives a breakdown of the memory requirements of our
compressed, approximate method C at level S, together with
our exact version under half-slab compression, PREGENH, at
S. We generally use half-slab compression with PREGENC as it
does not suffer from inaccuracies due to box-approximation and
both, rendering performance (see Section 5.3) and memory con-
sumption (see Figure 15), are improved. Table II contrasts these
two versions to a NAIVE BVH. It can be seen that, at the same
subdivision level, our approximate structure shows a much reduced
memory footprint. The amount of memory saved by not storing leaf
geometry easily outweighs the transition information (matrix stor-
age). However, it is also visible that our method increases mem-
ory requirements in the shading stage as feature adaptive subdivi-
sion (FAS) [Nießner et al. 2012] is employed to find the limit po-
sition and normal, which are then modified according to the infor-
mation in the displacement map. We only list a single color texture,
but in contrast to multiple layers of textures, as is common [Eise-
nacher et al. 2013], the memory overhead introduced at the shading
stage is negligible.

5.3 Rendering Performance

In this section we show how the methods evaluated regarding im-
age quality and memory consumption compare in terms of ren-
dering performance. It will be shown that, even though our com-
pression scheme results in very compact structures, decompression
overhead is not significant and performance is competitive, or even
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Fig. 16. Rendering performance in millions of rays per second of differ-
ent configurations of our method on the T-rex model. Green: C at Sn,
blue: C at Sn. The upper limits of the shaded regions are the respective
H variants, the lower limits the Q variants. The graph is divided into
methods run on the GPU (top part) and the CPU (shaded, bottom part). Ver-
tical lines indicate that the respective method reached a memory limit. Note
the logarithmic scale, and that a full table can be found in our supplemental
material.

better than state-of-the-art pre-generated structures. We will also
mention that very fast constant-memory solutions exhibit good per-
formance, but as presented earlier show much stronger rendering
error.

Figure 16 compares the rendering performance of different con-
figurations of our approach to the methods described at the outset of
Section 5. We used a Geforce GTX 780 in our evaluation and ren-
dered the T-rex model (as shown in Figure 1) at 2k×2k resolution.
The figure displays ray traversal performance in millions of rays
per second for primary rays. We refer to our supplemental material
for a full tabulation and performance for incoherent rays. Note that
we also provide a detailed breakdown of rendering times using our
approach at the end of this section.

Figure 16 lists ray traversal performance on the GPU (upper
part) as well as on the CPU (lower, shaded area). The figure shows
that using the compressed PREGEN (red) method is already much
slower than using a NAIVE (pink) BVH on top of an indexed face
set, both on GPU (using Aila and Laine’s method [2009]) and CPU
(using Embree [Wald et al. 2014]). Note how after subdivision
level 5 NAIVE is no longer available on the GPU (shown by its
performance dropping to the CPU level). This is also the case for
PREGEN, however only at very high subdivision levels. The perfor-
mance of the CACHED approach is very good until the cache size
is only a fraction of the entire BVH. Figure 17 shows this more
clearly, and also incorporates measurements for our Embree ver-
sions of PREGENC.

Furthermore, Figure 16 shows that RBVH with reduced qual-
ity settings exhibits very good rendering performance. However, it
should be noted that for the fastest method, RBVHlow, image qual-
ity is far inferior to using one of the slower methods. Also, even
though RBVHmed is still 46% faster than, e.g., C at S (which
provides similar quality), RBVHmed also requires 9.3 times as much
memory (see Table I).

Figure 16 also exemplifies that our approximate methods can run
on the GPU for very high levels while performing much better than
PREGEN. Similarly, our exact methods require less memory (see
Figure 15) which allows keeping more data in cache and thus also
shows better performance compared to PREGEN.

Table III shows rendering times for the T-rex (see Figure 1) for
our compressed, approximate method C at level S, together
with our exact version under half-slab compression, PREGENH,
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Fig. 17. Close-up of the rendering performance using Embree (i.e. on the
CPU) from Figure 16. Note the logarithmic scale.

Table III. A breakdown of the render time into the different stages
of our system. We accumulated traversal, surface evaluation and
shading time over five bounces and 32 samples per pixel in our
path tracer on the T-rex model. Traversal and attribute evaluation
was executed on the GPU while the shading stage ran on the CPU.
All times are given in seconds. For memory requirements refer to
Table II.

Method C PREGENH PREGEN NAIVE

Level S S S S
Ray traversal 1.60 2.29 2.48 1.27
Attribute evaluation 1.02 – – –
Shading 14.33 14.33 14.33 14.33

at S, regular PREGEN at S and NAIVE, also at S accumulated
over 32 samples. It shows that, for models with a single texture
layer, shading time increases by 7.1% due to surface attribute eval-
uation. Compared to ray traversal on the GPU this evaluation is ex-
pensive, however, when compared to tracing on the CPU, or much
worse, a system that would otherwise suffer from virtual memory
thrashing, we believe this increase is tolerable. Furthermore, if our
compressed hierarchy is applied to PREGEN, e.g. by using PRE-
GENH, no such penalty has to be payed.

6. LIMITATIONS AND FUTURE WORK

One of the major obstacles in rendering very large scenes is pre-
venting the system from degrading under virtual memory thrash-
ing [Yoon et al. 2006]. This concern became even more apparent
with the movie industry’s shift towards path tracing [Christensen
et al. 2006]. We believe that our proposed method can help to relax
memory limits, firstly by providing an approximate representation
with very strong compression and only small and controllable er-
ror. Secondly, our method can also be used to reduce the memory
footprint of current, state-of-the-art compact representations (such
as PREGEN) to almost half the original size.

The main limitation of our method is that, similar to other pre-
generated approaches, its memory requirements are still exponen-
tial in the subdivision depth. Thus, using our compressed represen-
tation can only delay the use of swapping by a constant factor (16
over PREGEN, or 2 when using our exact method). However, in the
critical interval where other approaches already suffer virtual mem-
ory degradation our scheme can be employed to continue tracing at
full speed.

A result of storing matrices at the transition level is that the full
compression factor of our method is not available at very low sub-
division levels. As Figure 15 shows, our compressed representation
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pays off starting from level 4 onwards. We believe that this is easily
managed by deciding against a transition step for such low levels
during adaptive subdivision.

As described in Section 5.1 our approximate methods (Q,
C, H) introduce some rendering error which, however small,
might limit the available compression for certain applications to
that of using our exact method (PREGENC). Further limitations are
that with motion blur (see Section 4) both key-frames have to be
fully tessellated to the same levels (i.e. memory requirements in-
crease slightly) and the construction of our hierarchy exhibits an
overhead of 15% as compared to standard top-down subdivision-
surface BVH construction. Even though we have not optimized
this part of our algorithm it is conceivable that this overhead is
an obstacle to using our method with on-the-fly subdivision such
as CACHED. On the other hand, such methods might benefit from
being able to keep more data in a fixed-sized cache. We believe
that this is an interesting topic for further research. Considering the
benefits of half-slab compression it seems promising to look into
compressing across more than two hierarchy levels.
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