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Figure 1: With our hierarchical multi-layer ray tracer, advanced e�ects, especially from long rays, can be rendered e�ciently.
Both images shown demonstrate two-bounce screen-space re�ections. Note the re�ection of the red and blue curtains in
the le�-most part in Sponza and the re�ections in the windows of San Miguel. Render times for multi-layer framebu�er
generation are 1.34 ms, computing our hierarchy takes 1.98 ms and tracing two re�ections bounces 4.93 ms (le�), and render
5.62 ms, hierarchy 2.09 ms and tracing two bounces 5.25 ms (right). All at 720p with 4 layers on Geforce 1070 GTXwithout any
further common optimizations such as sub-sampling or increased strides.

ABSTRACT
In this paper we present a method for fast screen-space ray tracing.
Single-layer screen-space ray marching is an established tool in
high-performance applications, such as games, where plausible and
appealing results are more important than strictly correct ones.
However, even in such tightly controlled environments, missing
scene information can cause visible artifacts. �is can be tack-
led by keeping multiple layers of screen-space information, but
might not be a�orable on severely limited time-budgets. Traver-
sal speed of single-layer ray marching is commonly improved by
multi-resolution schemes, from sub-sampling to stepping through
mip-maps to achieve faster frame rates. We show that by combining
these approaches, keeping multiple layers and tracing on multiple
resolutions, images of higher quality can be computed rapidly. Fig-
ure 1 shows this for two scenes with multi-bounce re�ections that
would show strong artifacts when using only a single layer.
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1 INTRODUCTION
Ray tracing in screen-space is a common approach to provide ad-
vanced e�ects in real-time contexts. In contrast to traditional,
geometry-based ray traversal, the approximation of tracing rays
against screen-space fragments is appealing when the time budget
allocated for these e�ects is severely limited. One prominent ex-
ample is computing screen-space re�ections, a technique that has
become one of the standard assets in real-time applications, such as
games [Sikachev 2014; Stachowiak and Uludag 2015; Valient 2014;
Wronski 2014], since its introduction [Graham 2010; Sousa et al.
2011]. One of the fundamental issues with screen-space ray tracing
is that objects not visible from the camera cannot in�uence the
image, which can lead to noticeable image artifacts. In tightly con-
trolled se�ings this can be managed manually by careful placement
of objects and selection of materials, but the general case requires
more data than just the front-most visible fragments. By providing
more information to the algorithm, artifacts can be reduced, but
usually at comparatively high cost during rendering.

Common optimizations for screen-space ray marching include
sub-resolution schemes (such as stepping in mip-maps or skipping
pixels along the ray), as well as (in most cases) ignoring multiple
layers. To this end we present a simple screen-space accelera-
tion structure that tracks multiple layers of the scene and greatly
speeds up ray traversal, especially for long rays that occur, e.g., with
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re�ections. �at is, out method combines having higher-quality
multi-layer information with a sub-resolution representation in a
uni�ed way. As input we only consider the fragments rasterized
for the camera’s view. �erefore, our approach does not target
support for completely omnidirectional re�ections, it only operates
in the view-frustum. �is is a common limitation [Mara et al. 2014,
2016; McGuire and Mara 2014; Sikachev 2014; Sousa et al. 2011; Sta-
chowiak and Uludag 2015; Valient 2014; Wronski 2014] that could
be li�ed by allowing more time.

Our acceleration structure can be built during rendering and
provides very fast ray queries when used with our hierarchical
screen-space traversal. Instead of only keeping the front-most
fragments [Sousa et al. 2011; Stachowiak and Uludag 2015; Valient
2014; Wronski 2014] we construct a per-pixel linked list [Yang et al.
2010]. Note that our scheme could also be used with e�cient depth-
peeling approaches, such as Mara et al.’s [2016]. From the thusly
collected fragments we can then build a spatial 2.5D hierarchy of
bounding volumes (in form of non-overlapping intervals). Ray
traversal in screen-space is then executed in a DDA [Amanatides
and Woo 1987; Fujimoto et al. 1986] fashion, i.e. by conservative,
2D line rasterization, but on multiple resolutions, and traversing
multiple intervals at each visited screen-space location.

Contribution. In this paper we present an extension of hierarchi-
cal ray marching [Stachowiak and Uludag 2015] that uses multiple
layers of scene information [Mara et al. 2014]. We introduce an
e�cient, hierarchical DDA-style ray marching algorithm that relies
on a dynamic data structure generated during scene rendering. Our
ray traversal is faster than previous DDA-based approaches [Mara
et al. 2016; McGuire and Mara 2014] and amenable to common
optimizations applied in real-world se�ings [Sousa et al. 2011; Sta-
chowiak and Uludag 2015; Valient 2014; Wronski 2014] (having one
of them, hierarchical ray marching, as its corner stone). Speci�cally,
the contributions presented in this paper are:
• A simple multi-resolution scheme to e�ciently build a dynamic

screen-space acceleration structure from multi-layered bu�ers.
• An e�cient, multi-resolution extension of the DDA ray march-

ing scheme that traverses multiple layers of geometry for each
visited pixel and allows to skip large areas of empty space.

• A description of how to e�ciently trace multiple bounces (or
samples) and demonstration of that at real-time frame rates.

In our implementation we use per-pixel linked list [Yang et al. 2010]
to generate the multi-layered base level, but we note that di�erent
approaches, e.g. relying on deep GBu�ers [Mara et al. 2016], are
also valid starting points.

Figure 2 shows a simple scene rendered with our approach. �e
limits of screen-space re�ections are clearly visible: missing infor-
mation for the ceiling and sporadic ray misses in indirectly visible
surfaces. Nevertheless, the �gure shows three-bounce screen-space
re�ections in a challenging setup and still provides appealing results.
See Figure 1 for more realistic applications.

In the remainder of this paper we will �rst give a brief overview
of related work (Section 2), followed by an overview of our hi-
erarchy and traversal method (Section 3). We then describe the
individual steps of our algorithm, along with relevant details for
fast GPU implementation (Sections 4 and 5). We further evaluate
our method’s performance and the quality of its results with respect

Figure 2: Dragon in a mirror-box with three-bounce screen-
space re�ections. A very challenging, albeit technical setup.

to a recent, high-performance method (Section 6) and conclude by
summarizing our �ndings and listing future work (Section 7).

2 RELATEDWORK
In this section we cover related work on multi-layer approaches to
approximate global illumination e�ects, screen-space ray tracing,
and real-time GPU ray tracing to provide context for our work. As
this is a very broad spectrum we limit our treatment to the most
closely related references.

Mulit-Layer Approximations. Storing multiple layers of geome-
try found to overlap a pixel during rasterization provides a richer
data-set that can be used to avoid artifacts and provides more scene-
information to methods working in image space [Shade et al. 1998].
Early implementations of global illumination approximations on
programmable GPUs used only few, separately rendered layers.
Examples include Wyman’s work on refractions [2005a; 2005b]
and Lee et al.’s handling of disocclusion in depth-of-�eld (DOF)
rendering [2008]. More complete layering information can be ob-
tained by depth peeling [Bavoil and Myers 2008; Everi� 2001] or
concurrent list construction [Yang et al. 2010]. Apart from trans-
parency [Bavoil and Myers 2008; Everi� 2001; Yang et al. 2010] such
data structures have been successfully applied to compute ambient
occlusion [Bavoil and Myers 2008; Mara et al. 2016; Ritschel et al.
2009] local indirect illumination [Mara et al. 2016; Ritschel et al.
2009], screen-space re�ections and refractions [McGuire and Mara
2014] and DOF [Lee et al. 2009, 2010] with high quality. �is quality,
however, is usually traded for an increase of computation time.

Nichols and Wyman [2009] show how compute-intensive screen-
space algorithms can bene�t from multi-resolution approaches.
Multi-layer �ltering, a multi-resolution approach that �lters multi-
layer structures similar to mip-maps, has been shown to support
fast rendering of DOF [Selgrad et al. 2015] and so� shadows [Selgrad
et al. 2014].

A di�erent approach to these problems was presented by Nalbach
et al [2014], where the scene-geometry is tessellated on-the-�y to
generate surfels [P�ster et al. 2000] which are then spla�ed to
compute indirect illumination, ambient occlusion and subsurface
sca�ering.
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Screen-Space Ray Tracing. Early screen-space ray tracing by
height-map bisection, such as with Lee et al.’s method to compute
depth-of-�eld [2009], assume that the scene’s depth structure can
be partitioned into disjoint intervals. Such height-�eld represen-
tations are, however, usually only crude approximations, missing
hidden surfaces inside a single layer. �erefore, they provide fast
computation, but are prone to missing important scene elements.
�is is especially the case for re�ective, refractive and ambient
occlusion rays that are not as perpendicular to the height-�eld as
DOF rays.

Recently, single-layer screen-space ray tracing by simple ray
marching [Sousa et al. 2011] has become a standard e�ect seen in
games [Sikachev 2014; Sousa et al. 2011; Stachowiak and Uludag
2015; Valient 2014; Wronski 2014]. McGuire and Mara [2014]
showed how perspective correct ray marching can avoid common
problems such as over- and undersampling. However, keeping
track of only a single depth-layer is problematic as important scene
information will be missed [Ganestam and Dogge� 2015; Mara et al.
2014]. In production se�ings, common optimizations for screen-
space ray marching are sub-sampling [Stachowiak and Uludag 2015;
Valient 2014; Wronski 2014], stepping in mip-maps [Stachowiak and
Uludag 2015; Valient 2014] and increasing the step-size [McGuire
and Mara 2014; Stachowiak and Uludag 2015; Valient 2014].

Mara et al. [2014] proposed a temporal improvement to depth-
peeling and keep only a few depth-layers which are put to best
use by requiring a certain minimum-separation between those lay-
ers. �ey further proposed an improvement of this depth-peeling
step by using geometry-shader extensions [2016]. Ganestam and
Dogge� [2015] instead follow a hybrid approach, partitioning the
scene into a limited near-�eld area where fully dynamic geometry-
based GPU ray tracing is used, and a single-layer per-frame cube
map to approximate re�ection and refraction rays in arbitrary direc-
tions by screen-space ray marching. Widmer et al. [2015] further
propose to build a quad-tree on the fragments generated for each
cube-map face. �is quad-tree holds all the fragments rasterized (for
cube maps), not only the front-most ones, and can further approx-
imate almost-�at regions with leaf-nodes (similar to multi-layer
�ltering [Selgrad et al. 2014]).

Fast GPU Ray Tracing. With ever faster GPU ray traveral [Aila
et al. 2012] and acceleration structure construction methods [Karras
2012; Lauterbach et al. 2009] the option to drop geometric approxi-
mations and rely on real ray tracing instead is becoming ever more
realistic. �is holds even more so in hybrid se�ings [Ganestam and
Dogge� 2015]. Findings from this context can also be applied to
speed up approximations, as we show in Section 5.3.

3 ALGORITHM OVERVIEW
We start by giving a high-level overview of our algorithm to provide
context for the more in-depth description of the individual steps in
the following sections.

Our algorithm works by keeping the k front-most layers of frag-
ments rasterized inside the view-frustum. �is is more information
than common screen-space ray tracers employ [Sousa et al. 2011;
Stachowiak and Uludag 2015; Valient 2014; Wronski 2014], but not
as comprehensive as with multi-view approaches [Widmer et al.
2015] or classical ray tracing.

We generate this set of fragments with a single pass over the
scene geometry that collects per-pixel linked lists [Yang et al. 2010],
followed by a sorting pass. Note that, as we will use this data-set to
approximate light transport in di�erent se�ings, we have to store
enough information about the hit-point to compute shading and
re�ection values on.

Since the amount of fragments rasterized is unknown in advance,
and may change per frame and scene, it is recommended to con-
servatively allocate memory in order to be capable of holding all
collected fragments. Even though potentially wasteful, overallo-
cating might be sensible as costly reallocation at run-time should
be avoided and, since the thread execution order on GPUs is non-
deterministic, front-most fragments may be collected last. It is also
possible to detect that storage has run out, or to query the actual
amount of memory consumed, by reading back the atomic counter
used for linked-list creation. Note that such issues can be avoided
with depth-peeling based methods [Mara et al. 2016] which are an
equally valid base for our algorithm.

�e sorting-pass then reduces the fully collected lists (up to the
scene’s depth complexity) to the k front-most fragments, optionally
using minimum-separation [Mara et al. 2014]. To ensure stable
results, the entire list of fragments for each pixel has to be traversed
and (partially) sorted, even when only a fraction will be wri�en
back again.

When tracing through fragments of multiple layers each frag-
ment needs to have an associated depth-extent [McGuire and Mara
2014]. �is is important to determine if a ray hit a fragment in
question, or travels behind it. We add this information to the sorted
fragments and write back a z-interval for each input fragment kept.

Based on these intervals we generate lower-resolution represen-
tations by merging similar intervals from neighboring pixels and
in depth-direction. �is way we arrive at an hierarchy of intervals
that, together with the sub-resolution pixel dimensions, specify a
spatial hierarchy. �is hierarchy could also be traced in a more
traditional sense, similar to the approach by Widmer et al. [2015],
however, our approach is geared towards DDA-style traversal.

To this end we employ a multi-resolution DDA method. Starting
from a location found during rendering (or by previous bounces
in our structure) we project a point along the ray’s direction into
screen-space and, a�er proper clipping, �nd the screen-space di-
rection to use. With this starting point and direction we follow
Amanatides and Woo’s [1987] conservative traversal and walk the
screen-space pixel raster by keeping track of the closest neighbor
to traverse next. �is is executed on di�erent resolutions as follows:
We remain on the �nest level of the hierarchy for a few steps before
progressively switching to lower-resolution levels with intervals
spanning larger areas of space. As long as no intersections through
evaluating ray and interval depth are found, traversal continues on
coarse resolutions. When an interval overlapping the ray is found,
then the traversal state is advanced to the location where the ray
enters this interval and the DDA switches to a higher resolution
before continuing. Hit-points are only found on the �nest level,
i.e. the intervals are not used for hit-point approximation (as by
Selgrad et al. [2014]), but only as an acceleration structure.

In the following we describe these steps in more detail, together
with information about how to e�ciently implement this scheme
on modern GPUs.
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Figure 4: �ree levels of merged interval-resolutions. �e intervals shown in the le� image are successively merged across
fragment-neighborhoods and z-distance. �e horizontal lines show the spatial extent of the per-pixel arrays of the base level.
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Figure 3: Data-format of our per-pixel collected lists/arrays:
collected lists from rendering (le�), sorted lists converted to
interval-arrays (center) and compacted interval-hierarchy
arrays (right).

4 HIERARCHY CONSTRUCTION
In this section we will describe how our hierarchy is built, start-
ing from scene rendering to collect all fragments in the view-
frustum (Section 4.1) over sorting (Section 4.2) to generating multi-
resolution intervals (Section 4.3).

4.1 Base-Level Generation
With our method, we render the scene geometry only once. We can
either choose to shade each fragment as it is rasterized, or only keep
color information for deferred shading. �e best choice depends
on how o�en shading will have to be computed for a given ray
tracing task. For example, with re�ections shading will have to be
computed for the front-most face as well as for each bounce traced.
If this is signi�cantly less that the number of fragments collected,
then deferred shading will be more e�cient. Unless otherwise
noted this is our default choice.

We also need to store the surface normals for further processing
(e.g. for re�ections, refraction, AO), but want to keep bandwidth
as low as possible. �erefore, we use octahedron normal vectors
(ONV) [Meyer et al. 2010] to encode them in two 16-bit values.
Furthermore, we have to store color (either shaded, or material)
and depth-values. �e former are stored with three 8-bit values for
the di�use color, a single channel specular value and 32-bit depth.
Including the pointer for the list-structure, each node is 128-bit,
that is, a single four-component vector (see Figure 3, le�). Storing
the data this compactly bene�ts performance as our algorithm is,
due to heavy list traversal, bandwidth-bound. If higher-precision
color values are required the options are to either compromise
on the quality of the normal or depth-values, or to incur a small
performance penalty for keeping an extra array. Should only a
few bits be required to enhance the color-range, they could be

shaved o� the next-pointer without imposing any practical limit on
fragment counts. Note that for physically based rendering, which
is common in recent game engines, more material properties may
be required. Since our algorithm is already bandwidth-bound and
more parameters would further increase bandwidth, it should be
a�empted to stay within 16 Bytes per fragment by shaving bits o�
the depth and next pointer. Otherwise, however, a performance
penalty is to be expected. �is is a limitation of the linked list
approach, where depth-peeling based approaches simply perform
be�er due to requiring less bandwidth.

4.2 List Truncation and Conversion
One way to improve the memory-access characteristics of the fol-
lowing list merging and traversal steps is to convert from lists to
sequentially stored per-pixel arrays. We do this by preallocating
a larger list-bu�er and placing the arrays at the back of the list-
data. In terms of memory-consumption this is somewhat wasteful
(see Section 6), however, regarding run-time this conversion pro-
vides a signi�cant speed-up in the later stages of the algorithm.
Even though it does not help with bandwidth, it avoids latency-
bo�lenecks and ensures more coherent access pa�erns in the sub-
sequent stages that make heavy use of this data. Note that the
conversion itself is free as we have to re-write the data a�er sorting
and truncation to k layers, regardless of this choice. Also note that
due to discarding geometry from overly long lists, artifacts may be
introduced (see Section 6).

�is improvement has been noted before [Selgrad et al. 2015], but
only in conjunction with scanning-passes. In our method we accept
to over-allocate and simply assume that each pixel requires all k
layers. �is way, indexing is coherent and, more importantly, with-
out any synchronization-overhead. Section 6 puts this overhead in
relation with the overall memory requirements of our method.

For sorting we use straightforward insertion sort (as also sug-
gested by Yang et al. [2010]) where we keep the partially sorted
arrays in per-thread shared memory to avoid register spills. We
only need k cells as farther-away fragments are not kept and can
be shi�ed out of the array while sorting. �e number of valid en-
tries stored in the thusly sorted per-pixel arrays is stored along the
o�set-pointer (head-pointer of the list-data).

We usually collect between 4 to 8 layers of fragments for each
pixel on the base-level, discarding any le�-over fragments farther
behind. To ensure be�er depth-coverage of those samples we can
optionally follow McGuire and Mara [2014] and ensure minimum-
separation, i.e. that two successive fragments have at least a certain
distance. However, while successfully thinning out dense areas,
this can lead to missing important intersections when tracing. A
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more robust way is to adapt the fragment-thickness in such cases
and merge multiple fragments during the sorting step. As we store
intervals in the �rst place, variable fragment-thickness maps well
to our approach. However, even though adaptive thickness reduces
the likelihood of misses, it cannot easily ensure that the correct
color (or normal) is returned as appropriate �ltering is not easily
possible in such cases. Figure 3 (center) illustrates the data-format
a�er sorting, where the list-pointer is replaced with the z-thickness
(either �xed, scene-dependent [McGuire and Mara 2014] or adaptive
a�er merging).

4.3 Interval Resolution-Pyramid
�e construction of our hierarchy is implemented in a process
similar to computing mip-maps: we merge the intervals stored in
neighboring 2 × 2 regions. �is is a very simple, but bandwidth-
intensive process. We load the �rst interval of each pixel from the
previous level and �nd the front-most one. �is interval is then
extended with successive intervals from the 2 × 2 neighborhood
(reloading new data as necessary) until its extent exceeds a given
threshold τ . At this point we emit the interval to the current level
and then start generating a new one. �at is, to compute the �rst
interval ILx,y,0 for target-pixel x ,y on level L, we start from depth
dmin = 0 until dmax = dmin + τ by merging all intervals of the 2 × 2
region (on level L − 1) in-between dmin and dmax:

ILx,y,new =
⋃

IL−1
x ′,y′,j

with x ′ ∈ {2x ,2x + 1} and y′ ∈ {2y,2y + 1}, min(IL−1
x ′,y′,j ) ≥ dmin

and max(IL−1
x ′,y′,j ) ≤ dmax. �is process is repeated as long as there

are intervals le�, generally resulting in a decrease of intervals as
we further relax τ over successive levels. �e rationale behind this
is that we also merge over a larger pixel-footprint and can thus
allow larger depth-intervals to be combined. We generally set τ
to 25 times the projected pixel-footprint at the starting-depth of
the interval in question, but note that this parameter is very robust
over a wide range (15 to 35 for Figure 1, le�).

Figure 4 illustrates this merging process over three levels. �e le�
image shows the depth-intervals (in blue) for fragments generated
for 8 pixels (aligned vertically). �e center image shows the same
data, but overlaid (in green) with the intervals generated by merging
similar intervals from the base level. As can be seen, merging occurs
over depth as well as pixel neighborhood. �e right image shows
the results of yet another merging pass (overlaid in red), based on
the previous merge (shown in the center).

Note that τ only a�ects the quality of our acceleration-structure,
not the quality of the results: we use the interval-hierarchy only to
skip over empty space. Having too small a threshold will lead to
long arrays that have to be traversed before �nding out whether
there is an intersection with a ray in a given list. Having too large
a threshold will lead to very short lists, yielding many unnecessary
intersections with a ray.

In the �rst invocation of this merging step we convert our data-
representation as generated in the sorting stage to a more compact
version (see Figure 3, right). As the interval-hierarchy is a true

depth

1
2 3

4 5

6
7 8 9

10 11 12 13

Figure 5: Single-level traversal of fragments. �e gray inter-
vals are not considered during traversal as an earlier one has
been found to be behind the ray. Traversal starts at the head
of the list for each pixel visited by the DDA.

acceleration-structure, the normal and color information is not re-
quired when leaving the base level. To this end we collapse the four-
component vectors required on the base level to two-component
vectors only holding the intervals’ entry and exit depths.

5 INTERVAL-HIERARCHY RAY-MARCHING
For screen-space ray marching it is a common choice to follow a
Bresenham-style traversal scheme [McGuire and Mara 2014; Wron-
ski 2014]. In single-level se�ings this is a reasonable choice as
missed pixels only have a small impact on image quality. Our ap-
proach, on the other hand, would su�er much from such a traversal
method as missed pixels on a coarser level of the structure can
map to large screen-space areas. �erefore, we rely on the more
exact, but arithmetically more complex, DDA-scheme proposed by
Amanatides and Woo [1987]. Section 6 shows that the hit-points
computed are a li�le more exact, but the primary motivation is to
avoid more severe misses on higher levels of our hierarchy.

5.1 Single-Level Traversal
We start our traversal by determining screen-space start and end-
points for the ray. To this end we re-project the starting position in
screen-space and compute the (application speci�c) ray direction in
eye-space. We then clip and project a suitable ending position along
the ray back to screen-space. We keep homogeneous interpolation
values according to McGuire and Mara [2014] to ensure perspective
correct interpolation of the ray’s eye-space position.

With this we intersect the current pixel’s bounding box with
the screen-space ray to determine the exit-parameters (in x and
y) along the ray. We choose the lower of these and update our
traversal state to the newly selected pixel. �is skips the �rst pixel
to avoid ge�ing stuck in self-intersections.

For further pixels along the ray we also intersect their bounding
box with the screen-space ray to determine ray entry- and exit
parameters in x and y, i.e. t0 and t1. �is corresponds to a simple,
2D ray/AABB test, including possible exchange of the min/max
values depending on the ray direction. Using perspective correct
interpolation we can map the pixel entry- and exit parameters to
depth values as stored in our interval-arrays, zi = interpolate(ti ).
With these z-bounds we traverse the intervals stored for the current
pixel until we �nd one overlapping [z0,z1], which will then be
returned as the intersection result. Note that, as intervals do not
overlap (neither in x ,y, nor in z) this yields a single fragment (see
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z0

z1

depth

Figure 6: When multi-level-traversal visits a pixel, all in-
tervals therein are checked for overlap with the ray using
the perspectively-correct interpolated z projection over the
pixel’s footprint, z0 and z1. If an intersection is found on
a higher level (here level 2) the screen-space intersection-
point (blue) is used to continue traversal (i.e. here we skip
the lower level-1 pixel in the right �gure as we know there
is no overlapping interval with the ray).

Section 4.1). As soon as an interval starts farther than z1, traversal
continues according to the earlier pixel-bounding box intersection.
Figure 5 illustrates this traversal scheme for a ray that travels over
a number of pixels (vertically aligned) that contain sorted intervals.
�e numbers shown at each interval give the traversal-order; gray
intervals are not considered as a previous interval was found to be
behind the ray, already.

5.2 Multi-Level Traversal
As can be seen from the example illustrated in Figure 5, even for
short rays (in this case terminating a�er 7 pixels rasterized vertically
via DDA), many intervals have to be checked due to the deep nature
of our structure. One apparent optimization would be to use binary
search on the interval-arrays, instead of simple depth-�rst traversal.
However, given that all rays originate from visible geometry, only
a small fractions of rays will travel much behind the front-most
layers [Widmer et al. 2015]. Our tests con�rmed these results: on
average 1.6 intervals are checked per visited pixel, see Section 6.

A common problem with ray marching is, that long rays are
very ine�cient, especially when only stepping though empty re-
gions [Widmer et al. 2015]. Adding a stride parameter [McGuire
and Mara 2014] helps, but scales only linearly and might compute
highly incorrect results for larger strides. See Section 6 for a compar-
ison of image quality under di�erent stride-se�ings. With respect
to this, our approach is more along the lines of Widmer et al. [2015],
in that we also follow a hierarchical approach.

Based on the multi-resolution interval hierarchy described in
Section 4.3, we start the traversal of a ray at the base-level (�nest
resolution). When we have not found an intersection a�ernup steps,
we switch to a higher level of our hierarchy (coarser resolution).
With the traversal as described in Section 5.1 this is straightfor-
ward: we simply intersect larger screen-space bounds with the ray
and traverse the corresponding higher-level arrays. For each nup
successive pixels traced without �nding an intersection we repeat-
edly switch to higher levels. Naturally, we only select higher levels
when the coarser pixel’s size does not overlap the current level’s
pixel size, to avoid self-intersection. In contrast to traversal using
only a single level of our hierarchy (as described in Section 5.1),

we do not terminate traversal when the ray is found to intersect
an interval. Instead, if we �nd an intersection at a higher level, we
advance the ray to the hit-point and descend one level. Note that, at
this step, we can skip over pixels: we advance the traversal-state to
the starting-depth of the interval and re-compute the screen-space
position. Figure 6 illustrates this for a ray travelling up in screen-
space. When entering the level-2 pixel (le�, shaded) we �nd that the
ray overlaps an interval (red). Re-projecting the intersection depth
(blue dot) yields a level-1 screen-space position. As the intersection
is above the lower level-1 pixel (right panel) we know that there
can be no intersection for it and skip forward to the upper one
(shaded).

�is skipping scheme suggests that descending more than one
level at an intersection might be bene�cial as the traversal ap-
proaches faster to the underlying level-0 interval that represents
the sampled scene geometry. However, this would also cause more
steps on lower levels for grazing intersections that do not contribute
a level-0 intersection, such as the one shown in Figure 6. Overall
we found that descending one level at a time performs best.

5.3 E�cient GPU Implementation
�e traversal state of our multi-level DDA is only tied to the ray’s
t parameter, screen-space position and current level, L. Ray/pixel
intersections are always expressed relative to t and ray/interval
intersections to the derived parameters z0, z1 (see Figure 6). �ere-
fore, there are no branches on ray direction, in fact, except for the
loops over pixels and intervals there are only trivial branches, (e.g.
min/max, no else-clauses).

However, imbalances in ray length can cause compute-units to
go under-utilized. To this end we keep track of the number of active
rays per warp and prematurely terminate rays when only 4 of a
warp are still tracing. �is introduces an error, but interpolation
from neighboring rays and, if necessary, environment lookup are
common approximations in such scenarios [McGuire and Mara
2014]. �is scheme is conceptually similar to dynamic fetching in
GPU ray tracing [Aila et al. 2012], but without fetching new rays.
We believe that having a global ray-queue could be bene�cial, but
have not investigated in this direction. Note that this scheme is
supported in OpenGL with the GL ARB shader ballot extension.

When tracing multiple bounces (or samples in general) we can
fully exploit this scheme and reload rays as soon as only a fraction
of the warp is active. Note that this e�ort has to be balanced with
overhead of computing bounces (or new sample directions). We
found the best con�guration to generate new rays when over 25% of
the treads in a warp are idle. �e average speed-up of this scheme
is 32% for early termination of single-bounce rays and 10% for
multiple bounces (as we also shade at ray termination this impacts
the bene�t of this optimization).

For multiple bounces our experiments showed that terminating
a group of rays as soon as only 4 active rays remain is overly aggres-
sive. It works well for single bounces, but with multiple bounces it
causes temporal noise. We found that terminating singular rays still
improves performance, but without introducing noticeable noise,
as can be seen in Figure 7.
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Figure 7: By terminating long rays, a performance versus
quality trade is achieved. �e above images show the ground
truth with no terminated rays (6ms, le�), the di�erence,
multiplied by 8, to terminating up to 1 ray per warp (5.4ms,
middle) and up to 4 rays per warp (4.7ms, right).
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Figure 8: Construction times for multi-layer SSR (lines) and
the stages of our multi-layer hierarchy for single-bounce re-
�ections in Sponza (top) and San Miguel (bottom), see also
Figure 1, graphed for di�erent numbers of layers collected
during rendering. Rendered on a Geforce 1070 at 720p.

6 EVALUATION
We evaluate our method on a di�erent use-cases where screen-
space ray tracing can be applied: re�ection, refraction, ambient
occlusion (AO) and shadows. While re�ection and refraction have
similar characteristics (long rays for a part of the visible surfaces)
ambient occlusion and shadow computations are rather di�erent.
For AO the rays cast are usually rather short, and for shadows from
point light sources rays have to be cast from almost all pixels of the
current view.

We compare the image quality provided by our method against a
recent, fast screen-space ray tracing method that follows a similar
approach to ours [McGuire and Mara 2014]. Regarding rendering
performance we compare our method to the aforementioned screen-
space ray tracer [2014], and also include improvements presented
in later work [Mara et al. 2016]. To be more concise we refer to
this method as SSR, to our method as HSSR (hierarchical screen-
space ray tracing). Note that we also provide further data about
construction and trace times in 720p and 1080p resolution, as well
as GLSL source code in our supplemental material.

Resolution Base Lists Arrays Hierarchy Total SSR
720p 96 58 40 194 42
1080p 217 132 89 438 95

Figure 9: Overall memory consumption in MiB: Keeping
lists and converting to arrays imposes a strong memory
overhead. Data for 4 layers and 5 levels of our hierarchy on
Sponza.

Figure 10: Missed hitpoints: Our HSSR shows only few
misses by virtue of DDA (le�). A stride of 1 with SSR also
yields good results, but stride 4 shows very strong artifacts.

Data Structure Generation Performance. In contrast to SSR, we
not only have to render multiple layers of the scene, but we also
have to build the hierarchy on top of this information. �is sug-
gests that HSSR-generation is a more expensive step. However,
as indicated by Figure 8, our method catches up with the depth-
peeling based SSR even when only few layers (3 for Sponza, 2 for
San Miguel) are collected. Note that we have to collect all layers
in any case (indicated by the constant overhead shown in blue)
and only sorting and hierarchy construction scale with the number
of layers. Furthermore, when comparing against SSR for simple
collecting-performance, the hierarchy construction (red) should
not be taken into account. �e times given in Figure 8 show that
collecting all fragments in per-pixel lists is, on current hardware,
faster than (highly optimized) depth-peeling, even when only few
layers are to be computed. �is �nding might carry over to improv-
ing SSR, even though �rst-layer traversal performance could be
impacted (due to less e�cient caching by not storing the front-most
layer in a single texture). Note that we provide construction times
for 1080p in our supplemental material.

Regarding memory requirements our method is more taxing
than SSR, as illustrated by Figure 9. �e initial list data holding all
fragments in the frustum produces an overhead. We note that this
overhead scales with the scene’s depth complexity and is thus, in
contrast to SSR, not decoupled from scene geometry. �is could be
countered by also using depth-peeling to generate our hierarchy
without a�ecting traversal performance (see below). �erefore
our technique to collect the scene fragments should be seen as a
di�erent approach that applies to both, SSR and HSSR.

As it is not guaranteed that each new level is of reduced depth
complexity, the worst-case memory requirements for 5 levels of our
hierarchy are 147MB at 720p and 332MB at for 1080p resolution,
assuming 4 full base layers and no merged intervals. Figure 9 shows
the amount of memory allocated for holding the hierarchy, which
was used in our experiments and found su�cient for all scenes
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Figure 11: Ray traversal times for SSR under di�erent stride
values as compared to our HSSR for single-bounce re�ec-
tions in Sponza (top) and San Miguel (bottom), see also Fig-
ure 1. Rendered on a Geforce 1070 at 720p.
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Figure 12: Hierarchy construction and single-bounce re�ec-
tion times for SSR under di�erent stride values as compared
to our HSSR in Sponza (top) and San Miguel (bottom), nor-
malized to SSR with stride 1. See also Figure 1, rendered on
a Geforce 1070 at 720p.

Figure 13: Population of hierarchy levels 0 (le�), 1 (middle
le�), 3 (middle right) and 5 (right) for τ = 25 in Sponza,
mapped from 1 (blue) to 8 (red). Depth complexity is contin-
uously reduced for every hierarchy level, therefore runtime
memory requirements can safely be assumed to be lower
than the worst-case.

employed, following the same allocation principles as for arrays
in Section 4.2. However, when using τ ≈ 25, a reduction of depth
complexity is very likely and therefore in practice less memory
needs to be allocated. For Sponza, this is shown in Figure 13. Also,

τ 1 2 3 4 6 8 12 16 24 32 48 64 96 128

1 ms

2 ms

3 ms

4 ms

5 ms

6 ms

7 ms

hierarchy construction trace

Figure 14: �e e�ect of τ on performance regarding hierar-
chy construction (red) and trace (blue), ranging from τ = 1
to τ = 128 on a logarithmic x-axis. We found a robust sweet
spot ranging from 15 to 35 for all employed scenes.

Figure 15: Re�ections in San Miguel, traced at 720p. Trace
time for two bounces: 8.3 ms, one bounce down 4.6 ms.

the e�ect of the parameter τ on hierarchy construction and trace
performance is shown in Figure 14. .

Image �ality. �e quality of images computed by screen-space
ray marching, when compared to approaches based on the actual
scene geometry, is dubious at best. However, appealing results
(even when deviating from the correct solution) can be achieved
and the SSR-method is well established in practice. With HSSR
we provide an alternative to overly aggressive stride se�ings by
skipping over empty space in a less error-prone way. In fact, relying
on DDA-style traversal [Amanatides and Woo 1987] our images
show fewer artifacts for corner cases. �is is illustrated in Figure 10,
along with the impact of stride 4 in SSR (a se�ing that o�en results
in similar traversal times to HSSR).

Ray Traversal Performance. Ray traversal performance using our
method is in most cases (see below) much faster than with previous
approaches. Figure 11 compares our method’s performance with
SSR at di�erent stride values. �e impact of striding can clearly be
seen, however, in contrast to using HSSR it comes at a cost in image
quality. In contrast, our method performs at the speed of stride
3 or 4 while not compromising on quality. �e reason traversal
performance does not su�er from having more layers is, that on
average only the front-most fragments are visited. Note, however,
that not having multiple layers leads to strong artifacts [McGuire
and Mara 2014]. �ese artifacts, along with artifacts from linked
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Figure 16: Artifacts from missing scene information when
tracing specular re�ection rays on a single depth layer (top
le�) vs. multiple depth layers (top right). In corner cases,
truncation of long per-pixel linked lists may lead to geom-
etry misses. Note the missing re�ection of the blue curtain
in the bottom le� image. In the bottom right image, due to
a slightly shi�ed view angle and thus resulting in shorter
per-pixel lists, the blue curtain is still found.

list truncation, can be seen in Figure 16. Still, over all traced
samples for Figure 1 (right) both SSR and HSSR visit 1.6 fragments
on average, per-pixel. �e di�erence in render times is also visible
in the number of iterations required by the DDA. For Figure 1
(right), SSR requires 142.5 iterations on average, whereas HSSR
only takes 21.8.

�e overall time of hierarchy construction and tracing of a single
bounce is given in Figure 12, normalized to SSR with stride 1. �e
�gure shows that, for larger numbers of layers, the slower depth-
peeling step of SSR pushes the relative performance of HSSR with
larger scenes (such as San Miguel in the bo�om panel). �is e�ect
diminishes when more samples are traced, making the overall per-
formance approach the ray traversal performance (see Figure 11).

Figure 17 shows that our method also works well when including
refractions. �e image shows re�ection rays from the �oor that
refract (twice) though the bunny, as well as direct refraction rays
that make visible the carpeted stairs in the back.

Note that our comparison to SSR uses the shader code published
by McGuire and Mara [2014] to ensure a fair evaluation. See our
supplemental material for both, SSR and HSSR shader code, as well
as for ray traversal performance at 1080p.

Computing AO. �e previous measurements have all been on re-
�ection and refraction rays. For AO our hierarchy is not as e�cient
as the rays are generally very short, which means that it cannot

Figure 17: Refraction and re�ection: �e �oor re�ects rays
that refract (twice) through the bunny (trace time 11.5 ms).

unfold its full potential. For the scene shown in Figure 18 tracing 16
samples with HSSR takes 18.4 ms, whereas SSR only takes 12.1 ms.
�is can be countered to some degree by not generating as many
sub-resolution representations in the interval-hierarchy, but the
overhead of switching layers, and of the more exact DDA limit the
e�ect of this. When taking care of all these limiting factors, HSSR
has been reduced to SSR, which simply performs be�er for short
rays. Note that for AO there may generally be be�er screen-space
based approximations available [Mara et al. 2016] than using ray
traversal.

Computing Shadows. Computing shadows from multiple lights
(or sampling area lights) is also possible using multi-layered screen-
space ray tracing. However, with shadows the limitations of this
approach become more apparent: as all visible surfaces have to
be checked for shadows, z-thickness becomes more of an issue as
rays can become completely orthogonal to the viewing direction.
But still, for light sources inside the view-frustum good results can
be obtained, as exempli�ed by Figure 19. Trace times to compute
shadows from three point lights for this setup are 24.4 ms with
SSR and 10.1 ms with HSSR, at 720p. Nevertheless, shadows are
not very stable, tear-up easily and these situations are not as easily
covered up as with, e.g., re�ections and AO.

Further Optimizations. �e measurements above have all been
with respect to full resolution data structures and traversal. Com-
mon practical optimizations to SSR are sub-resolution data struc-
tures and sub-sampling in screen-space, as well as larger stride
values. �e �rst two of these can easily be applied to our method,
and our supplemental material shows how performance improves
when tracing at a lower resolution (while still having full-resolution
data). It also contains construction times at 1080p, so that the impact
of having a sub-resolution data structure becomes apparent.

Adjusting a stride-parameter is, however, not as simple with our
method as striding is replaced by the hierarchy. To this end we have
included detailed trace times with varying stride-values above.

7 CONCLUSION
In this paper we have presented a hierarchical extension to multi-
layer screen-space ray tracing. We �rst evaluated a method to
construct multi-layered framebu�ers alternative to depth-peeling
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Figure 18: Ambient occlusion computed by tracing 16 sam-
ples via HSSR at 18.4 ms, via SSR 12.1 ms.

Figure 19: Shadows from 3 point lights traced by screen-
space ray marching at 10.1 ms (HSSR) and 24.4 ms (SSR).

based approaches. We further described our hierarchical multi-
layer ray marching scheme and demonstrated that it performs at
the level where recent, state-of-the-art methods have to sacri�ce
image quality to get to. We have also shown the cases in which
these claims are to be understood: for long screen-space rays. As
demonstrated, our method does not work well, e.g., for ambient
occlusion where only short rays are traced. In general we have pre-
sented construction and traversal times without common shortcuts
used, e.g., in games, but have noted where they are applicable. We
believe this presentation to give a more consistent overview of the
performance that can be expected.

In further work it would be interesting to investigate how more
orthogonal rays can be kept from traversing in-between fragments
that actually represent closed geometry. It would also be interesting
to �nd a balanced compromise between depth-peeling and per-pixel
lists, to reap the bene�ts of both, maybe along the lines of k-bu�ers.
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