
DIY Meta Languages with Common Lisp
Alexander Lier Kai Selgrad Marc Stamminger

Computer Graphics Group, Friedrich-Alexander University Erlangen-Nuremberg, Germany
{alexander.lier, kai.selgrad, marc.stamminger}@fau.de

ABSTRACT
In earlier work we described C-Mera, an S-Expression to C-style
code transformator, and how it can be used to provide high-level
abstractions to the C-family of programming languages. In this
paper we provide an in-depth description of its internals that would
have been out of the scope of the earlier presentations. �ese imple-
mentation details are presented as a toolkit of general techniques
for implementing similar meta languages on top of Common Lisp
and illustrated on the example of C-Mera, with the goal of making
our experience in implementing them more broadly available.

CCS CONCEPTS
•So�ware and its engineering→Source code generation; Pre-
processors; Translator writing systems and compiler generators;

KEYWORDS
Code Generation, Common Lisp, Macros, Meta Programming
ACM Reference format:
Alexander Lier, Kai Selgrad, and Marc Stamminger. 2017. DIY Meta Lan-
guages with Common Lisp. In Proceedings of European Lisp Symposium,
Brussels, Belgium, April 2017 (ELS’17), 8 pages.
DOI: 10.475/123 4

1 INTRODUCTION
In this paper we describe techniques that we employed to imple-
ment C-Mera [19], a meta language for C (and C-like languages),
embedded in Common Lisp. C-Mera provides a Lisp-like syntax
for C, that is, it is not a compiler from Lisp to C, but from C wri�en
in Lisp-form to regular C, i.e. there is no inherent cross-language
compilation. An exemplary C-Mera (C++) program that simply
prints all of its command-line arguments looks as follows:
1 (include <iostream >)

2
3 (defmacro println (&rest args)

4 `(<< #:std:cout ,@args #:std:endl))

5
6 (function main ((int argc) (char *argv [])) -> int

7 (for ((int i = 1) (< i argc) ++i)

8 (println " - " argv[i]))

9 (return 0))

�e mapping to C++ is straightforward for the most part, and
readers familiar with Lisp will recognize that lines 3-4 show a very
simple macro that is then used in the main function. For a more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123 4

thorough description and many more examples see our earlier
work [12, 17–19], note, however, that even the above code shows
features not present in many projects similar to C-Mera, e.g. inline
type annotations (i.e. pointers), idiomatic C shorthands such as the
post-increment and seamless integration with standard Common
Lisp macros.

On the side of the language’s user the most important features
of C-Mera are its �exibility and extensibility, especially via Com-
mon Lisp macros. Using those, custom abstractions can be built
easily, and with zero cost at run-time, which is very important
when working in high-performance application domains. As these
abstractions are quickly and easily a�ained such meta languages
can be a valuable tool for prototyping, research, and when working
on tight deadlines. Examples from this point of view can be found
in previous work on C-Mera and its application [12, 17–19].

In this paper we provide a more in-depth description of C-Mera
from the language implementor’s side. One of the key features of
C-Mera from this vantage point is the simplicity of its architec-
ture. Due to its embedding in Common Lisp (and adoption and
thus exploitation of its syntax) the problem of de�ning a system
suitable for highly involved meta programming in C and C-like lan-
guages is reduced to constructing C-programs from S-Expressions,
pre�y-printing the internal representation in form of C-code and
con�guring the Common Lisp environment such that any incon-
sistencies with our target languages are resolved appropriately.
�e implementation of these details is described on a much more
technical level than the scope of previous work allowed.

We believe that summarizing these details and documenting
the design decisions behind them can be valuable to projects with
similar goals, even when applied to di�erent target languages or
application domains. Especially since most of the implementation
details described are not tied to C at all, they can be applied to help
construct other meta languages on top of Common Lisp. Section 2
also lists a few Lisp-based projects that follow a similar path as C-
Mera and those could naturally �nd inspiration from this detailed
description.

In the remainder of this paper we �rst provide context for our
work, starting with C-Mera and similar Lisp-based approaches over
works that employ similar concepts in other languages to more gen-
eral compiler technology and how it is used towards the same ends
(Section 2). Following that, we detail the design goals we set up for
C-Mera and the evaluation process of a C-Mera program, from
how the source is read over its internal representation to tree tra-
versal during C-code generation (Section 3). We then describe our
package setup in more detail, noting the intricacies of overloading
C-Mera and Common Lisp symbols (Section 4). Finally, we provide
some very technical details on how to �nd a balance between the id-
iosyncrasies of the Common Lisp and C-family syntaxes (Section 5)
and conclude with a short summary (Section 6).

ELS’17, April 2017, Brussels, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

2 RELATEDWORK
Our description of techniques for implementing meta languages in
Common Lisp is naturally founded on our experience of working on
C-Mera. Following the initial description [19] that demonstrated
meta programming for stencil computations, we showed how it
can be used to provide higher-level programming paradigms to the
realm of C-like languages [18]. We also presented two real-world
use cases. Firstly, a domain-speci�c language for high-performance
image-processing applications [17] and, secondly, how C-Mera can
be used to explore a vast space of implementation variants of a given
algorithm [12]. With this paper we go back towards describing our
base system presented earlier [19], however, the focus of this work
is not on a description of the concept and providing examples to
illustrate its versatility, but on the actual, low-level implementation
details and design choices involved in the process.

Convenient, fully �edged macros and therefore extensive and
easy meta programming is most prominently featured in the Lisp
family of languages such as Racket, Scheme and Common Lisp.
For this reason, these languages are host to many similar projects:
Parenscript [16] generates JavaScript, whereas C-Amplify [6],
Cl-Cuda [22], Lisp/c [2], and C-Mera target C, C++ and similar
C-syle languages (with varying degrees of language support and
maturity). While reaping the bene�ts of straightforward embedding
in a powerful host language, following this approach the language
designer is not as free as when starting out from scratch.

Some rather new languages, such as Rust [13], are designed to
also support Lisp-style macros. However, as long as such languages
show a less uniform syntax larger-scale meta programming (in the
example of Rust using procedural macros) comes at a higher cost
of engineering.

Naturally, the more ambitious and free option to write a language
from scratch is, in principle, always available. Speci�c tools, for
example Yacc [8], Lex [11] or ANTLR [14], and libraries such as
Spirit [7] can ease the process of constructing an appropriate
parser. However, building a consistent language and implementing
powerful meta-programming capabilities are still the responsibility
of the language designer.

Extending an existing language for meta programming provides
a more e�cient solution. For example, MetaOcaml [4] provides
facilities for multi-stage programming with OCaml. Another exam-
ple is Terra [5], which provides meta-programming capabilities
by utilizing Lua as the host language. Lua functions can be applied
to adjust, extend, and write Terra code and the embedded code
can reference variables and call functions de�ned in Lua. Terra’s
sytanx is based on Lua and processed with a just-in-time compiler
and can optionally be modi�ed further with Lua prior to eventual
compilation.

Such approaches require considerable e�ort to be realized, espe-
cially when targeting syntactically hard languages (e.g. C++). Other
approaches utilize available language resources that were originally
not intended for meta programming on that scale. C++ Template
Meta Programming [25] (TMP), for example, exploits the template
mechanism for extensive abstractions. �e demand for such abstrac-
tions is visible from the �eld started by this work [1, 24], especially
in the face of it being generally considered very hard [6, 10, 20].

In contrast, utilizing Lisp as an code generator is generally a
straightforward task, but unleashing the full potential of Lisp’s
built-in functions and macro system while allowing convenient
and naturally wri�en input code (from the perspective of the C, as
well as the Lisp programmer) can become rather tricky. In the most
naı̈ve approach, every syntactical element of a meta language im-
plemented in, e.g., Common Lisp, will be mapped to S-Expressions,
leading to highly verbose code. �is can go on well unto the level of
specifying how symbols have to be rewri�en [2]. Sections 4 and 5
will describe the compromise found during C-Mera’s implemen-
tation to have more free-form code while not su�ering a loss in
generality.

3 EVALUATION SCHEME
In this section we �rst de�ne the most important characteristics
that we wanted our meta language to exhibit (Section 3.1). We
then provide a short overview of our intended syntax and mode of
evaluation, exempli�ed with C-Mera (Section 3.2). Following that
we describe the evaluation scheme in more detail, starting with
how the internal representation is constructed (Section 3.3), kept
and �nally wri�en out again (Section 3.4).

3.1 Design Goals
�e most fundamental requirement for our language was being able
to seamlessly interact with Common Lisp’s macro system. �is way
we ensured that it is meta programmable to the same degree and
not limited, e.g., to some speci�c form of templating. Interaction
with Common Lisp’s macro system also entails that writing our
own macro-expansion routines was never intended, that is, our
problem statement is much simpler as it seems at �rst glance. We
also wanted to provide a system as accessible to C-programmers
as possible, given our primary objective. For us, this entails to
have the language properly keep the case of symbols (while not
making the Common Lisp code in macros more awkward than
necessary), to provide as many idiomatic C shorthands as possible
(e.g., increments, declaration decorators), to interact with Common
Lisp code (honoring lexical scope), to avoid quotation whenever
possible and being able to reference symbols from external C �les.

�e style of meta programming we wanted to support and ex-
plore is strictly macro-based. �at is, we want the language to
be able to specify new syntax and cast semantics into it and not
explicitly post-process a syntax tree (as possible, e.g., by working
on our AST, as described in Section 3.4, or, for example when using
C++ only, via Clang [23]). Note that the la�er approach is in fact
more powerful, but comes with a much larger overhead in engi-
neering and might consequentially not pay o� for projects of small
to medium size [17].

3.2 Look and Feel
In the following we will provide a higher-level overview of a few
aspects of C-Mera’s internal workings, mainly aiming to provide a
general outline of the intended look-and-feel we wanted to achieve
for our meta language.

Symbols. �e following toy example demonstrates the mapping
of two addition expressions enclosed in a lexical environment that
introduces a local variable in the Common Lisp context.

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussels, Belgium

(let ((x 4))

(set foo (+ 1 2 (cl:+ 1 2) x 'x y)))

As can be seen in the following line generated from this example,
not all expressions appear in the resulting code, since the Common
Lisp expressions are not part of the target language:

foo = 1 + 2 + 3 + 4 + x + y;

�is example is comprised of the following components. �e set
form indicates an assignment for the target language and creates a
syntax element that is carried over to the resulting code. Both the
plain + and cl:+ (from the cl package) denote addition, but the one
from the cl package is evaluated directly within the host language
and yields the number 3, whereas the unquali�ed counterpart is
kept as an expression of the target language. Common Lisp’s special
operator let de�nes a lexical scope and introduces the variable x in
the example above. �is operation is solely executed in the scope of
the host language and does not contribute additional output to the
resulting code. In contrast to x, the symbol y is unde�ned, thus it
is taken to directly refer to a variable in C. Since there is obviously
no useful application of an unquoted, unde�ned variable in the
host language, the assumption that a symbol is designated to be
used in the target language (and thus is unde�ned in the host’s
context) is justi�ed. �erefore, there is no need to quote unde�ned
symbols inside target language syntax elements. However, it is still
required to quote symbols de�ned in the host language’s context,
to process them as variables for the target language and avoid value
substitution. �e implementation of this feature is described in
Section 5.3.

Functions and Macros. Functions are managed in a similar fash-
ion. �is also holds for special forms to construct the syntax tree
of the target language that are, naturally, de�ned in the host lan-
guage’s context (see Section 3.3). If the �rst element of a list is not
de�ned during evaluation, it is taken to denote a function call in
the target language. In the following example one function and
two macros are de�ned (one function is commented out) and foo is
assigned the result of calling those, in turn.

(defun bar (a b) (cl:+ a b))

; (defun baz (a b) (cl:+ a b))

(defmacro qux (a b) `(+ ,a ,b))

(defmacro qox (a b) `(cl:+ ,a ,b))

(set foo (bar 1 2))

(set foo (baz 1 2))

(set foo (qux 1 2))

(set foo (qox 1 2))

Here, the function bar returns the number 3, which is used directly
in the resulting code. �e function baz is not de�ned (indicated
by the line being commented out). Based on the aforementioned
processing of unbound symbols, the unde�ned list head baz is
treated as a function call in the target language. As can be seen in
the generated code below, only one function call (for which there
was no valid host-context function available) is generated in the
target code:

foo = 3;

foo = baz(1, 2);

foo = 1 + 2;

foo = 3;

Also note how the expansion of the qox macro is evaluated in the
host context.

As with symbols used for variable names, there is an ambiguity
if the symbol is de�ned both in the host and target language. In
these cases we opted to prefer the host language’s version (as with
variables), while a function call in the target language can be gen-
erated using the funcall form. Continuing the example above the
following expressions do not trigger host-language function calls
or macro invocations:

(set foo (funcall 'bar 1 2)) → foo = bar(1, 2);

(set foo (funcall 'qux 1 2)) → foo = qux(1, 2);

�e implementation of this feature is also described in Section 5.3.

3.3 Evaluation
�e evaluation scheme we apply in order to build an Abstract Syntax
Tree (AST) may be one of the most simple approaches. Nevertheless,
for our needs it is more than su�cient and, more importantly, very
easy to implement, utilize, and extend. In the following we show
how a target-language in�x operator (e.g. +) can be de�ned.

(defclass infix-node ()

((operator :initarg :op)

(member1 :initarg :lhs)

(member2 :initarg :rhs)))

�is speci�es an in�x expression as being comprised of an operation
with a le�- and right-hand side. Note that the representation is
simpli�ed at this point, a more detailed description of the AST
nodes can be found in Section 3.4.

With this example AST, nodes for such expressions can be gen-
erated by calls to make-instance, building up a tree of node objects.
As this would clearly not be very concise code, we wrap macros
around each AST-node constructor. For the case of an addition
expression this would be (+ ...). �e following macro su�ces to
wrap around the call to make-instance:

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs ,lhs

:rhs ,rhs))

Application of this macro yields the appropriate AST node:
(+ 1 2) → #<INFIX-NODE #x...>

Using this scheme we are not limited to one single level of evalua-
tion, nor constrained to entirely stay in the target language. Nesting
multiple target functions and mixing them with host code is sup-
ported and intended. �e following example shows an evaluation
process starting with:

(* (/ 1 2) (+ (cl:+ 1 2) 3))

Expressions are, as usual, evaluated from the inside (starting with
the two leaf nodes of the AST to-be). In this case, one of those
expressions generates a node object and the other evaluates as a
build-in Common Lisp expression:

(* #<INFIX-NODE #x1...> (+ 3 3))

�e next step is the evaluation of the remaining nested objects:
(* #<INFIX-NODE #x1...> #<INFIX-NODE #x2...>)

In the �nal step, the entire expression collapses to one single object:
#<INFIX-NODE #x3...>

ELS’17, April 2017, Brussels, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

As can be seen, every evaluation results in a node object that is
therea�er used in the next evaluation step by its parent.

As described above, the full evaluation process also includes
macro expansion that generates the instantiation calls. �us, the
evaluation �rst expands to the following make-instance form:

(make-instance 'infix-node

:op '*

:lhs (make-instance 'infix-node

:op '/

:lhs 1

:rhs 2)

:rhs (make-instance 'infix-node

:op '+

:lhs (cl:+ 1 2)

:rhs 3))

According to this, the AST is built by expanding all macros and
collapsing the individual calls to make-instance by evaluation:

(make-instance 'infix-node

:op '+

:lhs #<INFIX-NODE #x1...>

:rhs #<INFIX-NODE #x2...>)

�is shows that the evaluation scheme results in an implicitly
self-managed construction of the AST. �at is, we rely entirely on
the standard Common Lisp reading and evaluation process. �ere-
fore, there is no need for an extra implementation of a parser inside
the host language, since every aspect is already handled by the
Common Lisp implementation itself.

Note that this evaluation scheme seamlessly integrates with
macro processing in general and thus facilitates the incorporation
of new, user-de�ned syntax, even up to the scope of de�ning custom
DSLs [17, 19] without any changes to the underlying AST.

3.4 Abstract Syntax Tree
�e AST is the intermediate representation of the fully macro-
expanded and evaluated input code. Every node type used for the
AST is derived from one common class (node). Independent from
additional information stored inside individual derived objects, ev-
ery class instance contains the slots values and subnodes (inherited
from node). �is very simple setup renders the traversal of the AST
almost trivial. Based on Common Lisp’s multi-methods, we require
only two methods to build various traversers. One of these methods
handles the class node:

(defclass node ()

((values :initarg :values)

(subnodes :initarg :subnodes)))

For derived classes, the slot values contains a list of slot names,
which are not processed further by the traverser (i.e. leaf nodes).
�e subnodes slot stores a list of slot names that the traverser de-
scends into (i.e. internal nodes). �e structure can be used to capture
nodes where the sub-nodes have di�erent semantics (e.g. condi-
tional expressions). Nodes storing multiple objects with the same
semantics (e.g. body forms) utilize nodelist:

(defclass nodelist (node)

((nodes :initarg :nodes)))

�e nodes slot is a plain list containing the sub-node objects. All
nodes in our AST are either a nodelist or derived from node, and
most of the traversal is implemented in terms of them.

AST Traversal. Traversal then works as follows: �e traverser
starts at the root node and when it encounters an object of type
node it calls itself recursively for slots of the current object listed in
subnodes:

(defmethod traverser ((trav t) (node node))

(with-slots (subnodes) node

(loop for slot-names in subnodes do

(let ((subnode (slot-value node slot-name)))

(when subnode

(traverser trav subnode))))))

A similar procedure is executed for nodelist nodes.
With the classes de�ned above and these methods we have a

simple traversal scheme that can easily be extended for further
tasks. Additionally, more speci�c traversal methods can implement
mechanisms for processing the data of individual node types. As a
result, building functionalities that require AST traversal becomes
straightforward. �e following traverser simply lists all in�x ex-
pressions in the tree (continuing the example from Section 3.2):

(defclass debug-infix ())

(defmethod traverser ((_ debug-infix) (node infix-node))

(format t "˜a˜%" (slot-value node 'op)

(call-next-method)))

Note that call-next-method continues with the general tree traversal.

Before and A�er. With additional support from Common Lisp’s
before and a�er methods, the generation of syntactically faithful
target code becomes even more comfortable. As an example, uti-
lizing these features enables catching the beginning and end of an
expression, which, for example, can easily be exploited for emi�ing
parentheses:

(defmethod traverser :before ((pp pretty-printer) (_ infix-node))

(format (stream pp) "(")))

(defmethod traverser :after ((pp pretty-printer) (_ infix-node))

(format (stream pp) ")")

With this approach we can easily ensure proper execution order
for arithmetic expressions:

(/ (+ 1 3) (+ 2 5)) → ((1 + 3) / (2 + 5))

Proxy-Node Extension. Although we are able to trigger traversal
events when entering and leaving a node as described above, we
cannot trigger them when descending and returning from speci�c
child nodes while processing their parent node. Visitation of these
nodes is implemented by methods on their respective node type, but
this loses the context of their parent node (which might be required
to generate inter-node output). �is situation can easily be solved
with proxy nodes. Nodes of this type are merely sentinels, without
additional content, and are solely applied to identify transitions
between nodes. �ey are usually inserted and removed by a node
that needs control over the output between its child nodes.

One example would be placing the +-signs in an arithmetic ex-
pression such as (+ a b) to yield a + b, using the following proxy:

(defclass plus-proxy (node)

((subnode :initarg :subnode)))

Using such an object for the right-hand-side operand of the in�x-
node would then trigger the proper method with correct placement
of the plus sign.

(defmethod traverser :before ((pp pretty-printer) (_ plus-proxy))

(format (stream pp) " + "))

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussels, Belgium

Note that this scheme is just an approach to keep traversal me-
chanics and output logic distinct. When mixing both, proxies will
not be required, but then each method on a given node type will
have to repeat the traversal logic.

Overall be believe that our AST scheme is very simple and con-
sequently easy to use, while still being easily extensible.

4 PACKAGES
As seen in Section 3.2, we do not want to explicitly annotate symbols
with their packages. However, starting from the default package
(cl-user) the following a�empt to de�ne a macro fails:

(defmacro + (a b)

`(make-instance 'infix-node ...))

�is is due to the inherent package-lock on the user package’s in-
terned Common Lisp functions and macros. Every symbol interned
form common-lisp (or short, cl) is locked by default. �is would pre-
vent any of the rede�nitions we have already used many times until
now. A possible solution to allow modi�cations is unlocking pack-
ages, which generally is a poor approach, as it is not standardized
and drops the overridden symbols’ default implementation.

�e lock, however, only a�ects the actual symbols in the cl
package, not symbols of the same name from di�erent packages.
�is fact is usually not obvious as virtually all Common Lisp code
uses the cl package, which then results in name con�icts that cannot
be overridden due to the lock. �e key to solve this issue is very
simple: not using the cl package, or, when only few symbols are to
be overridden, to not include those when using the cl package.

(defpackage :meta-lang

(:use :common-lisp)

(:shadow :+))

�is package de�nition interns all symbols but + from the cl package.
As a result the symbol + is unbound and can be used, e.g., for macro
de�nitions:

(in-package :meta-lang)

(defmacro + (a b)

`(cl:+ ,a ,b))

�e example above de�nes a simple macro that maps the +-sign
to its implementation from the cl package. As can be seen, access
to the original implementation is still possible if the symbol is used
with its package pre�x. Such a package setup enables us do rede�ne
symbols according to our needs:

(defpackage :cm-c

(:use :common-lisp)

(:shadow :+))

(in-package :cm-c)

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs ,lhs

:rhs ,rhs))

Using this package, super�uous pre�xes can be omi�ed and are
only required when accessing (overridden) symbols from cl:

(+ (cl:+ 1 2) (cl:+ 2 3)) → 3 + 5;

Since we also want to reduce the amount of explicitly quali�ed
names in the input code we can utilize a simple macrolet to adjust
the e�ects of those symbols in its lexical scope:

(defmacro lisp (&body body)

`(macrolet ((+ (lhs rhs) `(cl:+ ,lhs ,rhs)))

,@body))

At this point we might end up at an impasse; once inside the
lexical scope of the macrolet, globally de�ned functions rede�ned
in the local scope are not accessible:

(+ 1 2) → 1 + 2

(cm-c:+ 1 2) → 1 + 2

(cl:+ 1 2) → 3

(lisp

(+ 1 2) → 3

(cm-c:+ 1 2) → 3

(cl:+ 1 2)) → 3

�e obvious solution for this problem is to introduce a third
variable that retains the initial functionality, as opposed to the
locally used, volatile symbols. To keep the symbols’ names, an
additional package is required to place those symbols in:

(defpackage :swap (:use) (:export :+))

Macros plainly wrapping the original symbol or function, unfor-
tunately, fail to provide the required behaviour. Such macros emit
symbols that are then still bound in the lexical scope of the sur-
rounding macrolet.

(defmacro swap:+ (lhs rhs)

`(cm-c:+ ,lhs ,rhs))

To escape the lexical scope, we can access a symbol’s original macro
implementation with macroexpand-1:

(defmacro swap:+ (lhs rhs)

(macroexpand-1 `(cm-c:+ ,lhs ,rhs)))

As long as macroexpand-1 is called without an environment ar-
gument it returns the version of the macro de�ned in the global
environment. With such swap symbols we are able to address the
global implementation of our syntax, independent from the current
lexical scope.

5 BRIDGING THE SYNTACTIC GAP
In this section we describe how certain details of C-Mera are laid
out to strike a balance between the worlds of our host and target
languages. �e �rst part discussed is control over case. Common
Lisp converts symbols that it reads to upper case unless otherwise
speci�ed. With this default behaviour, users from C-family lan-
guages would be surprised to see how their code changed when
printed out in the target language. Section 5.1 details why the
built-in modes in Common Lisp do not su�ce and describes the
compromise employed in our language.

A di�culty of a di�erent kind is Lisp’s very uniform notation
on the one hand and C’s (and even more so its derived languages)
extensive syntax on the other hand. Although every aspect of C-
family languages can be modeled with S-Expressions, we doubt the
bene�t of having to formulate every li�le aspect of C’s syntax this
way. Arrays can be used as an example here: It is obvious that writ-
ing (array (array (array foo 1) 2) 3) is not as convenient, at least not as
concise, as writing foo[1][2][3]. We aim for supporting as much as
possible of C’s handy syntax by exploiting the extensible Common
Lisp reader to parse special syntax. Details on our implementation
of such shorthands are presented in Section 5.2.

ELS’17, April 2017, Brussels, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

�e last aspect of our presentation is concerned with the input
code’s aesthetics and appeal. We want to write code as conve-
niently as possible and prevent exhaustive (and to part of our target
audience, confusing) usage of quotes. Instead of writing (funcall 'f

'a 'b (funcall 'g 1 'c)), we simply want to allow (and do support)
the call to be (f a b (g 1 c)), even if f, a, b, g, and c are unbound.
Program code, even if it is target code, should appear as natural
code in Lisp notation, and not require quotes when the situation can
be uniquely resolved. Our implementation of adaptive quotation
that tackles this issue is described in Section 5.3.

5.1 Preserving Case by Inversion
Code in Common Lisp is, unless explicitly avoided, converted to
upper case, therefore it o�en appears that the case of the input code
is not considered at all. It can be controlled on a per-symbol level
via (intern "foo") and explicit literals such as |foo|. More general
control is available via readtable-case, which can change the default
behaviour. Even though there is the so called modern style for
Common Lisp, which sets the readtable-case to :preserve, current
implementations are usually compiled in :upcase (causing all cl
symbols to be interned in upper case). Since our target language
does not do any automatic case conversion, but keeps the input
code’s case as it is, we have been compelled to reproduce this
behaviour as closely as possible in C-Mera.

�e naı̈ve approach is se�ing the readtable-case to :preserve when
processing a source �les. �is is an inadequate solution, however,
as it would require us to use upper-case representations of all the
standard Common Lisp symbols. As a result, input code would have
to be wri�en in the following form:

(setf (readtable-case *readtable*) :preserve)

(DEFUN foo (a b) (+ b c))

(DEFUN bar (a b) (CL:+ a b))

(foo 1 (foo X y) (bar 1 2))

With :preserve we are free to use upper- and lower-case symbols
for variables (X and y in this example), but also forced to write all
existing Common Lisp symbols (such as DEFUN) in upper case.

Since :downcase would not work at all (does not keep case), the
only option le� to investigate is :invert. In fact, with :invert, in-
put symbols in lower case are mapped to upper-case symbols (and
vice versa). �erefore, input code in lower case can be mapped
to existing functions and symbols. One problem remains: newly
introduced functions and variables are also inverted. Luckily, Com-
mon Lisp processes symbols an additional time during printing,
which is a natural part of source-to-source compilers such as we
are targeting. �erefore, the desired functionality is available out
of the box:

(format t "˜a" 'foo) → FOO

(format t "˜a" 'FOO) → FOO

(format t "˜a" 'Foo) → FOO

(setf (readtable-case *readtable*) :invert)

(format t "˜a" 'foo) → foo

(format t "˜a" 'FOO) → FOO

(format t "˜a" 'Foo) → Foo

�is seems to be a reliable solution, but one detail should be kept
in mind: �e intern function now shows counter-intuitive behavior

with inverted reading, since it does not use the reader and therefore
is not a�ected by the readtable:

(setf (readtable-case *readtable*) :invert)

(format t "˜a" (intern "foo")) → FOO

(format t "˜a" (intern "FOO")) → foo

(format t "˜a" (intern "Foo")) → Foo

Interning does not read symbols, but strings, and therefore it misses
the initial inversion step. In the given situation, we have imple-
mented and used our own intern function that inverts the read
string in the same way as the reader does.

5.2 Universal Reader
As exempli�ed at the outset of of Section 5, forcing the use of S-
Expressions for every minor syntactic detail to be generated can
become a nuisance. Luckily, Common Lisp’s �exible reader can
be used to strike a balance between having a macro-processable
S-Expression language and supporting idiomatic C-isms.

With (set-macro-character #\& #\'&-processor), for example, the
reader can be extended to process symbols starting with an amper-
sand by applying the function &-processor to such symbols. �is
particular reader function sets up a speci�c mechanism that covers
one single macro character. �erefore, it is usually required to
set up functions for individual syntax elements that di�er from
S-Expressions, but this scheme is limited to elements that can be
captured by such a simple pre�x.

According to that, it is easy to implement a function that han-
dles C syntax for the address-of operator. In that case the reader
simply consumes, e.g., (+ &a &b) and emits (+ (addr-of a) (addr-of b)).
Unfortunately, it is not easily possible to identify C++ references,
for example in (decl ((int& a))), since they can occur at the end of
the corresponding symbol. In addition to that, we are limited to one
single character. �erefore, we are unable to use the reader in that
fashion for neither pre�x increments nor decrements: (+ ++a --b).

Surprisingly, there is a very simple, general solution for pro-
cessing almost every type of symbol: hooking the reader macro to
whitespace.

(set-macro-character #\Space #'pre-process)

(set-macro-character #\Tab #'pre-process)

(set-macro-character #\ Newline #'pre-process)

�is setup con�gures the reader to utilize the function pre-process
to handle every symbol with a leading whitespace character. �e
task of pre-process is parsing individual symbols, identifying non-
Lisp syntax and emi�ing proper S-Expressions. By doing this, we
can support very convenient, but tricky C syntax, as shown in the
following examples:

(* ++a[4] --b[x++])

→ (* (aref (prefix++ a) 4) (aref (prefix-- b) (postfix++ x)))

(+ foo[baz [1]][2][3] &qox)

→ (+ (aref (aref (aref foo (aref baz 1)) 2) 3) (addr-of qox))

(set foo- >bar- >baz 5)

→ (set (pref (pref foo bar) baz) 5)

So far we are able to process symbols as long as they have lead-
ing whitespace. However, list heads usually do not have leading
whitespace, but begin directly a�er the opening parenthesis. �ese
situations should also be managed, for example in calls of type

DIY Meta Languages with Common Lisp ELS’17, April 2017, Brussels, Belgium

(obj->func args...). �erefore, we need to register an additional
macro character:

(set-macro-character #\(#'pre-process-heads)

Contrary to the previous symbol processing, where each symbol is
handled separately, the macro-character setup above requires us
to imitate Common Lisp’s standard mode of reading lists, which is
easily achieved using (read-delimited-list #\)) in order to get all list
elements. �erea�er, pre-process-heads emits a slightly adjusted list
comprised of the altered list head and the (untouched) remaining
list elements. Eventually, the list’s head has been adapted to our
needs by pre-process-heads and the remaining list elements will be
modi�ed later-on by pre-process (as described above), if necessary.

Additionally, we might not want to process all list heads in gen-
eral, but only those that are neither bound variables, nor functions
or macros. �is is due to the fact that valid Common Lisp macros,
for example, can be named in a way that these reader macros would
pick up on. In general, we opted to take the meaning de�ned in the
host language for any ambiguous cases. Our approach to identify
bound symbols is detailed in the next section.

One con�ict that cannot be solved with the aforementioned
reader still remains. Packages in Common Lisp are denoted similarly
to namespaces in C++, but using the reader for this issue would
break Common Lisp’s package annotations. As an alternative, fully
quali�ed symbols could be exploited for C++ namespaces:

(defpackage :N1)

(set N1::foo 4)

→ N1::foo = 4;

�is, however, does not support nesting of namespaces, since nested
packages are not available in Common Lisp [21]. Naturally, the
explicit form can always be utilized, but is very verbose:

(set (from-namespace N1 N2 foo) 4)

→ N1::N2::foo = 4;

�erefore we apply set-dispatch-macro-character to introduce a
speci�c annotation for C++ namespaces:

(set-dispatch-macro-character #\# #\: #'colon-reader)

(set #:N1::N2::var 4)

→ (set (from-namespace N1 N2 var) 4)

→ N1::N2::var = 4;

As a further convenience for Common Lisp users, our reader macro
also supports the single-colon notation: #:N1:N2:var.

5.3 Adaptive�otation
A crucial part of being able to write code as we claim in Section 3.2
is identifying which symbols are bound to host-language interpre-
tations. One example is when it comes to using function calls for
the target language in traditional Lisp notation: Instead of being
forced to write (funcall 'foo 1 2 3) we want to support (foo 1 2 3),
even if the symbol foo is unbound and have it emit foo(1, 2, 3).

�e �rst a�empt to realize the aforementioned notation has been
the application of boundp and fboundp. Both functions work well
for globally de�ned variables, functions, and macros:

(defvar foo 1)

(boundp 'foo) ;; -> T

However, they cannot be applied to symbols from lexical environ-
ments:

(let ((bar 1))

(boundp 'bar)) ;; -> NIL

Since the naı̈ve approach cannot handle such symbols, we had
to look for an alternative. Every implementation of Common Lisp
that supports lexical scoping has to keep track of bound symbols
and their meaning. �is information is stored in the environment,
but not every implementation has a convenient method for ac-
cessing this data. In case of SBCL [15] and Clozure CL [3] we
can exploit function-information to check whether a function is
de�ned in the lexical or global scope. Similar to functions, we can
use variable-information for symbols. For implementations that
do not supply these functions, such as, for example, ECL [9], we
have to implement a look-up in the environment object itself. �e
following example shows how one could utilize the listed functions
and implement the missing look-up for ECL in order to retrieve
information whether a symbols is bound or not.

(defun fboundp! (function &optional env)

#+sbcl (sb-cltl2 :: function-information function env)

#+ clozure (ccl:: function-information function env)

#+ecl (or (fboundp function)

(find function (rest env)

:test #'(lambda (x y) (eql x (car y)))))

#-(or sbcl clozure ecl) (error "..."))

(defun vboundp! (variable &optional env)

#+sbcl (sb-cltl2 :: variable-information variable env)

#+ clozure (ccl:: variable-information variable env)

#+ecl (or (boundp variable)

(find variable (first env)

:test #'(lambda (x y) (eql x (car y)))))

#-(or sbcl clozure ecl) (error "..."))

Due to the fact that these functions require access to the environ-
ment object, they can only be applied usefully inside macros. �e
following macro is a minimal example for a possible use of these
functions:

(defmacro xboundp (item &environment env)

(if (or (fboundp! item env)

(vboundp! item env))

t ; item bound

nil)) ; item unbound

With such functions at hand, we are now free to build a more �exible
quotation scheme, speci�cally tailored to our meta language:

(defmacro quoty (item &environment env)

(cond ((listp item)

(if (fboundp! (first item) env)

item

`(function-call ...)))

((symbolp item)

(if (vboundp! item env)

item

`',item))

(t item)))

We can now add the quoty macro to the tree construction process
(see also Section 3.3):

(defmacro + (lhs rhs)

`(make-instance 'infix-node

:op '+

:lhs (quoty ,lhs)

:rhs (quoty ,rhs)))

�is allows us to freely and seamlessly mix and match globally
and lexically bound symbols and functions with unbound symbols
taken to denote target-language functions and variables:

ELS’17, April 2017, Brussels, Belgium Alexander Lier, Kai Selgrad, and Marc Stamminger

(labels ((foo (a b) (cl:+ a b)))

(+ (foo 1 2) (bar 1 2)))

(labels ((foo (a b) (cl:+ a b)))

(let ((x 5))

(set A (+ (+ x y) (+ 'x (+ (foo 1 2) (bar 1 2)))))))

�e arithmetic expression in the last line results in the following
code for the target language:

A = 5 + y + x + 3 + bar(1, 2);

�oty is most useful in special forms, where we do not want to
quote every individual symbol, but still want to be �exible enough
to call functions or use symbol values. Another example from C-
Mera is that we utilize quoty in the variable-declaration macro,
decl:

(decl ((const super_fancy_type x = 4)) ...)

→ const super_fancy_type x = 4; ...

(defmacro with-pointer (pointer &body body)

`(decl (((postfix* ,pointer) x = (foo)))

,@body))

(with-pointer int ...)

→ int* x = foo(); ...

�e �exible quotation allows us to use types (super fancy type) and
functions (foo) that are not de�ned in the host language’s context.
Additionally we are now able to evaluate functions inside these
quasi-special forms (post�x* and foo in the example).

We have opted for this scheme to provide a simple syntax, even
in the face of e�ects similar to unwanted capture (by de�nition of
host functions).

6 CONCLUSION
In this paper we have presented many details on how we have
constructed our meta language, ranging from Common Lisp im-
plementation techniques to reader-macro hackery. Our pragmatic
approach shows with how li�le e�ort Common Lisp can be bent to-
ward our ends, resulting in an e�cient meta-programming system
for C-like languages.

We showed how our simple, Lisp-like notation can be evaluated
to provide seamless integration with Common Lisp code during
compilation, most notably with support for macros that are our
primary vehicle for meta programming (this is also illustrated in
our previous work on C-Mera). We also detailed the intricacies
of our scheme, namely how to properly override built-in symbols
while retaining their original interpretation in an accessible way,
how to con�gure the Common Lisp system to keep our target
language’s case while not sacri�cing a modern notation of the
Common Lisp meta part of the language. We furthermore showed
how we manage to provide many C-isms that programmers from
that area would �nd awkward working without (and even seasoned
Lisp users might miss for their conciseness), and how unnecessary
quoting of unbound symbols can be avoided while keeping the
Common Lisp interaction fully working.

Overall, none of these aspects are new �ndings. Our primary
goal with this summary paper is to have all of this information
collected in a single, clearly marked place. We hope this will help
projects with similar demands to get up to speed more easily than
when solutions to all of those issues have to found independently
and without proper context.

ACKNOWLEDGMENTS
�e authors gratefully acknowledge the generous funding by the
German Research Foundation (GRK 1773).

REFERENCES
[1] Andrei Alexandrescu. 2001. Modern C++ Design: Generic Programming and

Design Pa�erns Applied. Addison-Wesley.
[2] Jonathan Carlos Baca. 2016. Lisp/c. h�ps://github.com/eratosthenesia/lispc.

(2016). GitHub Repository, Accessed Jan 2017, Active May 2016.
[3] Gary Byers. 2017. Clozure Common Lisp. h�p://ccl.clozure.com/. (2017). Ac-

cessed Jan 2017.
[4] Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy. 2003. Im-

plementing Multi-stage Languages Using ASTs, Gensym, and Re�ection. In
Proceedings of the 2nd International Conference on Generative Programming and
Component Engineering (GPCE ’03). Springer-Verlag New York, Inc., New York,
NY, USA, 57–76.

[5] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013.
Terra: A Multi-stage Language for High-performance Computing. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). ACM, New York, NY, USA, 105–116.

[6] Andreas Fredriksson. 2010. Amplifying C. h�p://voodoo-slide.blogspot.de/-
2010/01/amplifying-c.html and h�ps://github.com/deplinenoise/c-amplify. (2010).
Personal Blog & Github Report, Accessed Jan 2017, Repository active Feb 2010 –
Mar 2010.

[7] de Guzman Joel, Kaiser Hartmut, and Nu�er Dan. 2016. Boost Spirit.
h�p://www.boost.org/doc/libs/1 63 0/libs/spirit/doc/html/index.html. (2016). Ac-
cessed Jan 2017.

[8] S. C. Johnson. 1975. YACC—yet another compiler-compiler. Technical Report
CS-32. AT&T Bell Laboratories, Murray Hill, N.J.

[9] Daniel Kochmański. 2017. Embeddable Common Lisp. h�ps://common-
lisp.net/project/ecl/main.html. (2017). Accessed Jan 2017.

[10] Jan Cornelis Willem Kroeze. 2010. Tracing rays the past, present and future of ray
tracing performance. Ph.D. Dissertation. North-West University.

[11] M. E. Lesk and E. Schmidt. Lex — A Lexical Analyzer Generator. Technical Report.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974. PS1:16–1 – PS1:16–12
pages. h�p://kjellggu.myocard.net/misc/tutorials/lex.pdf

[12] Alexander Lier, Franke Linus, Marc Stamminger, and Kai Selgrad. 2016. A
Case Study in Implementation-Space Exploration. In Proceedings of ELS 2016 9th
European Lisp Symposium. 83–90.

[13] Nicholas D. Matsakis and Felix S. Klock, II. 2014. �e Rust Language. In Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology (HILT ’14). ACM, New York, NY, USA, 103–104.

[14] Terence Parr. 2013. �e De�nitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf.

[15] Christophe Rhodes. 2008. Self-Sustaining Systems. Springer-Verlag, Berlin,
Heidelberg, Chapter SBCL: A Sanely-Bootstrappable Common Lisp, 74–86. DOI:
h�p://dx.doi.org/10.1007/978-3-540-89275-5 5

[16] Vladimir Sedach. 2016. Parenscript. h�p://common-lisp.net/project/parenscript/.
(2016). Accessed Jan 2017.

[17] Kai Selgrad, Alexander Lier, Jan Dörntlein, Oliver Reiche, and Marc Stamminger.
2016. A High-Performance Image Processing DSL for Heterogeneous Architec-
tures. In Proceedings of ELS 2016 9th European Lisp Symposium. 39–46.

[18] Kai Selgrad, Alexander Lier, Franz Köferl, Marc Stamminger, and Daniel
Lohmann. 2015. Lightweight, Generative Variant Exploration for High-Per-
formance Graphics Applications. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Generative Programming: Concepts and Experiences
(GPCE 2015). ACM, New York, NY, USA, 141–150. DOI:h�p://dx.doi.org/10.1145/
2814204.2814220

[19] Kai Selgrad, Alexander Lier, Markus Wi�mann, Daniel Lohmann, and Marc
Stamminger. 2014. Defmacro for C: Lightweight, Ad Hoc Code Generation. In
Proceedings of ELS 2014 7th European Lisp Symposium. 80–87.

[20] Philipp Slusallek. 2015. Approaches for Real-Time Ray Tracing and Lighting Sim-
ulation. h�p://www.dreamspaceproject.eu/dyn/1429609964713/DREAMSPACE -
D4.1.1 Approaches v1.3.pdf. (Jan. 2015).

[21] Alessio Stalla. 2017. Symbols as Namespaces. ELS 2016 9th European Lisp
Symposium, Lightning Talks Session 1, h�ps://www.european-lisp-symposi-
um.org/editions/2016/lightning-talks-1.pdf. (May 2017).

[22] Masayuki Takagi. 2017. Cl-Cuda. h�ps://github.com/takagi/cl-cuda. (2017).
GitHub Repository, Accessed Jan 2017, Active Apr 2012 – Jan 2017.

[23] �e Clang Developers. 2014. Clang: A C Language Family Frontend for LLVM.
h�p://clang.llvm.org. (2014).

[24] David Vandevoorde and Nicolai M. Josu�is. 2002. C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[25] Todd Veldhuizen. 1995. Template Metaprograms. C++ Report (May 1995).

http://kjellggu.myocard.net/misc/tutorials/lex.pdf
http://dx.doi.org/10.1007/978-3-540-89275-5_5
http://dx.doi.org/10.1145/2814204.2814220
http://dx.doi.org/10.1145/2814204.2814220

	Abstract
	1 Introduction
	2 Related Work
	3 Evaluation Scheme
	3.1 Design Goals
	3.2 Look and Feel
	3.3 Evaluation
	3.4 Abstract Syntax Tree

	4 Packages
	5 Bridging the Syntactic Gap
	5.1 Preserving Case by Inversion
	5.2 Universal Reader
	5.3 Adaptive Quotation

	6 Conclusion
	References

