
A High-Performance Image Processing DSL for
Heterogeneous Architectures

Kai Selgrad∗ Alexander Lier∗ Jan Dörntlein∗ Oliver Reiche† Marc Stamminger∗

∗Computer Graphics Group †Hardware/Software Co-Design

Friedrich-Alexander University Erlangen-Nuremberg, Germany

{kai.selgrad, alexander.lier, jan.doerntlein, oliver.reiche, marc.stamminger}@fau.de

ABSTRACT
Over the last decade a number of high performance, domain-
specific languages (DSLs) have started to grow and help
tackle the problem of ever diversifying hard- and software
employed in fields such as HPC (high performance comput-
ing), medical imaging, computer vision etc. Most of those
approaches rely on frameworks such as LLVM for efficient
code generation and, to reach a broader audience, take input
in C-like form. In this paper we present a DSL for image
processing that is on-par with competing methods, yet its de-
sign principles are in strong contrast to previous approaches.
Our tool chain is much simpler, easing the burden on imple-
mentors and maintainers, while our output, C-family code, is
both adaptable and shows high performance. We believe that
our methodology provides a faster evaluation of language
features and abstractions in the domains above.

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Source code generation; Preprocessors; Macro
languages;

Keywords
Domain Specific Langauges, Generative Programming, Com-
mon Lisp, Meta Programming

1. INTRODUCTION
Image processing is a wide field with diverse applications rang-
ing from high performance computing (e.g. fluid simulation)
and computer vision to medical imaging and post-processing
of computer generated imagery (in games and movies). For
many of these applications efficient execution is crucial and
the tools provided should be accessible to users that are not
hardware experts. Therefore, approaches based on domain-
specific languages are very popular in image processing (see

European Lisp Symposium 2016, Krakow, Poland
Copyright c© 2016 The Authors
European Lisp Symposium 2016, Krakow, Poland

Section 2), especially when the applications are intended to
run on different target platforms, possibly at the same time.
To satisfy the performance demands of these applications,

image processing DSLs usually generate output in the form
of C or C++, or even lower level representations such as
LLVM [10] bytecode. Targeting more closed systems even
requires generating code in vendor-specific languages, such
as CUDA [13], or the lower level PTX [14]. Additionally,
many DSLs are embedded in low level host languages, such
as C++, to exploit the already existing parser front-end and
AST construction.
In this paper we propose to use a Lisp-based design ap-

proach to DSL construction in the high-performance domain
and demonstrate our DSL, Chipotle. Chipotle is heav-
ily inspired by HIPAcc1 [11], a Clang-based, high-perfor-
mance image processing DSL that targets heterogeneous
applications. For instance, Chipotle incorporates efficient
execution-patterns for GPU kernels that were found to per-
form well in HIPAcc.
In contrast to HIPAcc, our DSL builds on C-Mera2 [17], a

lightweight S-Expression to C-style transcompiler embedded
in Common Lisp. The benefit of using C-Mera, espe-
cially as compared to Clang, is that it carries much smaller
overhead and is more easily extensible. This argument indi-
cates that for Chipotle it was a simple task to experiment
with different notations, whereas HIPAcc is strictly tied to
valid C++ syntax. Providing more concise syntax would
require changes to the C++ parser front-end, which is a
highly non-trivial task. Using C-Mera’s simple internal
representation, extracting information from the input code
is straightforward, as the input program itself is a (semanti-
cally annotated) syntax tree. With these two characteristics
the task of expanding upon HIPAcc’s feature-set (e.g. adding
heterogeneous scheduling) is very problem-oriented and a
correspondingly fast process. It should be noted, however,
that Clang is a very powerful tool and provides, amongst
others, complete syntactic and semantic analysis and ensures
type safety in the input program. While our goal is not to
detract from such commodities, we rather propose that a
more lightweight and flexible solution benefits research and
exploration, and that using a full C++ compiler toolchain
might be excessive for the rather limited code generation
involved in our target domain. When fully type-checked and
deeply implicit information is required, choosing Clang in
favour of C-Mera may prove reasonable.
1hipacc-lang.org 2github.com/kiselgra/c-mera



The remainder of this paper is structured as follows: In
Section 2 we present an overview of the field of image pro-
cessing DSLs and related approaches. Section 3 gives a
short introduction to C-Mera, and our DSL is described
in Section 4. In Section 5 we show two real-world examples
of practical image processing operators, and compare our
method’s performance (in terms of executing time, appli-
cation development time and DSL development effort) to
a competing approach in Section 6. We conclude with a
description of limitations and future work in Section 7.
The specific contributions of our work are:
— We present a new, high-performance image processing

DSL targeting heterogeneous setups, Chipotle, that
follows a Lisp-based methodology. The implementation
is available and showcases an automatic generation of
high-performance CUDA and AVX code from a single
algorithm specification.

— We show how this language can be extended to auto-
matically provide a schedule that employs GPUs and
CPUs together, based on simple user input.

— We also show how easily these tasks are accomplished
using powerful, but lightweight and flexible tools.

— Finally, we provide working examples that go beyond
the simple filter setups commonly found in literature.

2. RELATED WORK
The feature set and optimization techniques of the presented
Chipotle DSL are primarily inspired by HIPAcc [11]. The
HIPAcc framework embodies a DSL for image processing, em-
bedded into C++, and a source-to-source compiler, mainly
focusing on point, local, and global operators. HIPAcc’s com-
piler generates highly optimized code for different target
architectures and languages, including CPUs, GPUs, and
FPGAs through CUDA, OpenCL, Android’s Renderscript,
and VivadoHLS. HIPAcc is based on the Clang/LLVM com-
piler infrastructure and performs AST-level optimizations
based on domain and architecture knowledge. Architecture-
specific optimizations include image padding for suitable
memory alignment, the use of shared and texture memory,
and thread-coarsening for GPUs. Furthermore, the auto-
matic vectorization for common instruction sets of CPUs is
supported, as well as the generation of a streaming pipeline
for FPGAs. Optimizations based on domain knowledge, for
instance, include the efficient handling of boundary condi-
tions for local operators.
Halide [15] is also a DSL for image processing, based on

the Clang/LLVM infrastructure, similar to HIPAcc. Instead
of imperatively describing image filters, a functional pro-
gramming paradigm is applied, which enables additional
sophisticated features, such as kernel fusion. Halide is ca-
pable of generating code for various target architectures,
namely CUDA, OpenCL, PNaCL, as well as C++. Yet, this
is not an entirely automatic process. The developer needs
to specify a schedule that defines how the algorithm should
be mapped onto the target architecture in order to obtain
efficient code. Halide’s schedule has to be manually specified
and requires the developer to have a certain degree of archi-
tecture and domain knowledge. However, as the schedule is
evaluated dynamically by the compiler, it can be altered or
even entirely replaced at run time.
DeVito et al. [4] present Orion (and its source language,

Terra), a stencil DSL for processing images, which is mainly

inspired by Halide and makes use of mathematical operators
that are implicitly evaluated on the whole image. This results
in a very dense image processing pipeline representation.
Although the DSL does not support the generation of code for
different architectures, the vectorization module from its host
language Terra can be used to map the stencil operations to
vector instructions. Additionally, Orion adopted the ability
to define a schedule for a filter pipeline from Halide, which
led to very efficient results.
PolyMage [12] is a DSL for image processing where the

image processing pipeline is represented as a directed, acyclic
graph. Similar to our representation, this graph implicitly
contains the data relationships between different operators
and allows extracting this information to implement parallel
scheduling for certain computations.
Patus [3] is a DSL and code generation framework for

parallel stencil computations based on a C-like syntax. It
follows a heterogeneous approach and is capable of generating
code for CPU and GPU execution. Its auto-tuner is fed with
a user-defined strategy to produce optimized code.
Native Common Lisp image processing libraries that target

high-performance, such as Opticl3, are, in contrast to the
aforementioned methods, not DSLs themselves, but might
be applicable as a basis for Lisp-only image processing DSL
approaches. Targeting heterogeneous architectures might,
however, prove problematic in such a setup.
A more general approach is proposed with frameworks

for DSLs that can be used to create entirely new languages.
Well-known representatives of this class are Delite [2], Asp [7],
Terra [4] and AnyDSL [8]. Here, the framework performs
generic, parallel and domain-specific optimizations for a new
DSL without the necessity of starting development from
scratch. Thereby, the effort to create DSLs can be drastically
reduced. In a broader sense, C-Mera can also be attributed
to this class of frameworks.

3. BRIEF REVIEW OF C-Mera
C-Mera is a simple transcompiler embedded in Common
Lisp. It allows writing programs in an S-Expression syntax
that is transformed to C-style code. This means that very
simple extensions for languages with similar syntax are pro-
vided on top of the core C support. For example, the C-Mera
distribution provides modules for C++, CUDA, GLSL and
OpenCL. The main goal of providing an S-Expression syntax
is to write the compiler such that it evaluates this syntax
to construct a syntax tree when the input program is read,
thereby allowing interoperability with the Common Lisp-
system, most importantly by providing support for Lisp-style
macros. To keep this part short we refer to the original C-
Mera paper [17] for a more detailed description of the system
and its implementation.
With the use of macros the input program no longer repre-

sents a plain syntax tree, but a semantically annotated tree
that is transformed according to the implementation of the
semantic nodes (macros). The utility of such a system ranges
from simple, ad-hoc abstractions and programmer-centric
simplifications [17] to providing otherwise hard to achieve
programming paradigms for C-like languages [16] and even
to fully fledged domain-specific languages.
The following example, taken from our domain, shows the

definition of a simple image filter:
3github.com/slyrus/opticl



(a) Input image (b) Laplace filtered (c) Blur & Laplace (d) Blur, Laplace & blur

Figure 1: Input image and results from using edge detection via a Laplace operator.

1 (function filter ((float *data) (float *mask) (int filter-w)
2 (int filter-h) (int w) (int h)) -> void
3 (for ((int y 0) (< y h) ++y)
4 (for ((int x 0) (< x w) ++x)
5 (decl ((float accum 0.0f))
6 (for ((int dy 0) (< dy filter-h) ++dy)
7 (for ((int dx 0) (< dx filter-w) ++dx)
8 (set accum
9 (+ accum

10 (* (aref mask (+ (* filter-w dy) dx))
11 (aref data
12 (+ (* (+ y (- (/ filter-h 2)) dy)
13 w)
14 x (- (/ filter-w 2)) dx)))))))
15 (set (aref data (+ (* y filter-w) x))
16 accum)))))

This describes a C function that takes an array as its input
(e.g. a grayscale image) and applies the a dimensional filter
mask. Filtering proceeds by iterating over the input image.
The weighted average is computed for each pixel using the
provided filter mask (centered at the current pixel). Using
C-Mera it is easy to reduce the code for this algorithm to a
simplified description, as presented in the following listing.
1 (defilter filter (data mask (w h) (filter-w filter-h))
2 (loop2d (x y w h)
3 (decl ((float accum 0.0f))
4 (loop2d (dx dy filter-w filter-h)
5 (set accum (* (mask dx dy)
6 (cell (+ x (- (/ filter-w 2)) dx)
7 (+ y (- (/ filter-h 2)) dy)))))
8 (set (cell x y) accum))))

This is achieved by a set of simple macrolets:
1 (defmacro defilter
2 (name (data mask (w h) (filter-w filter-h)) &body body)
3 ‘(function ,name
4 ((float* ,data) (float* ,mask)
5 ,@(loop for x in (list w h filter-w filter-h)

collect ‘(int ,x))) -> void
6 (macrolet
7 ((loop2d ((x y w h) &body body)
8 ‘(for ((int ,y 0) (< ,y ,h) (+= ,y 1))
9 (for ((int ,x 0) (< ,x ,w) (+= x 1))

10 ,@body)))
11 (mask (x y) ‘(aref ,’,mask (+ (* ,’,filter-w ,y) ,x)))
12 (cell (x y) ‘(aref ,’,data (+ (* ,’,w ,y) ,x))))
13 ,@body)))

Naturally, further shorthands and simplifications can be
incorporated into this kind of macro. Section 4 shows the
language that evolved from these considerations and Section 5
shows to more advanced examples.

Figure 2: Illustration of point operators (left) and
local filters (right).

1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge laplacian (:input base :output lapla :arch cuda)
5 (deflocal
6 :mask ((-1 -1 -1)
7 (-1 8 -1)
8 (-1 -1 -1))
9 :aggregator +

10 :operator *
11 :finally (set accum.x (- 255 (fabs accum.x))
12 accum.y (- 255 (fabs accum.y))
13 accum.z (- 255 (fabs accum.z)))))
14 (edge store-ublapla (:input lapla)
15 (store-image :file "out.png")))

Figure 3: A simple, but complete, Chipotle-program
that filters an input image using a Laplace operator.

4. THE Chipotle-DSL
In this section we describe Chipotle, our domain-specific
language for image processing. Chipotle provides a very
concise notation, is easily extensible and expands into high-
performance code for both GPUs (using CUDA) and CPUs
(using SSE and AVX). It furthermore provides heterogeneous
scheduling based on simple tagging.
As already mentioned, Chipotle is heavily inspired by

HIPAcc. HIPAcc is based on the Clang/LLVM infrastructure,
which introduces two major drawbacks. First of all the DSL
syntax is restricted to its host language C++ and causes the
DSL to be rather verbose. Secondly, extending the DSL with
new language constructs is a very time consuming process.
HIPAcc uses the Clang-AST to substitute certain nodes with
domain-specific variants. This AST, however, is generated
after a complete semantic analysis of the input C++ code
and is thus extremely detailed. Filtering the relevant nodes
to extend and adapt the AST for a particular domain is a
cumbersome task. Therefore, Chipotle was designed to
counter these complications by providing a very concise and
declarative style that aims to be easily extensible.

4.1 Notation
As a running example, we will consider the definition of
a simple Laplace operator (see Figure 1 (b)). In image
processing, the Laplace operator is a simple filter that can
be used for edge detection. The code listed in Figure 3 shows
how this operator can be expressed using Chipotle. The
principal component of a Chipotle-program is the filter
graph. The contents of a filter graph are nodes that represent
(intermediate) images and edges that specify transformations
on those images. In the code given in Figure 3 there are
three image operations: loading an existing image from disk,



1 (edge box (:input base :output filtered :arch cuda)
2 (deflocal
3 :extent (5 5)
4 :grayscale t
5 :accum-name val
6 :codelet (set val (+ val (local-ref base rel-x rel-y)))
7 :finally (set val (/ val 25))))

Figure 4: A box-filter stage illustrating the use of
codelet. The same operation can be implemented by
using a filter mask of all ones.

filtering it with a local operator and finally storing it back to
disk. The images themselves are implicit in the connection
information given with the edges (e.g. laplacian takes input
from base and stores its result in lapla).
The largest part of the laplacian graph is the description

of the local operator. A local operator (see Figure 2), L, is a
function on an image, I, mapping a neighborhood, N , of a
given pixel of to an single output pixel value [1]:

L(x, y) = ⊕(i,j)∈N fI(x, y, i, j)

The most common case of this is discrete convolution using
a convolution matrix M (as mask in the example above):

L(x, y) =
∑i,j<n

i,j=0 MijIx+i−bn/2c,y+j−bn/2c

Inspired by HIPAcc’s implementation we provide an implicit
looping mechanism where only the operator and aggregator,
⊗ and ⊕, respectively, must be specified and we assume

fI(x, y, i, j) = Mij ⊗ Ix+i−bn/2c,y+j−bn/2c.

The result of the local filter can be further adapted via the
:finally clause. In the example above we use this clause to
store the absolute value of the result. It is also possible to
specify an arbitrary function for f by providing a :codelet,
as with the simple box filter shown in Figure 4. There, the
relative positions during the iteration are available in rel-x

and rel-y (naturally, the names of such generator-defined
variables, as found throughout this section, can be specified
explicitly, too). For a more elaborate example see Section 5.1.
In accordance with Bankman [1] and HIPAcc we also pro-

vide a simpler form, the point operator (see Figure 2). Instead
of mapping a region of the input image to an output pixel,
point operators map input pixels to output pixels without
considering the pixel’s neighborhood. The following frag-
ment is part of the well-known Harris corner detector [5] that
determines whether a pixel is part of a corner in the input.
The computation depends on the two input images xd and
yd, which hold the gradients of the original input in x and y
direction.
1 (edge hcd (:input (xd yd) :output out :arch cuda)
2 (defpoint (:grayscale t)
3 (decl ((float xx (* xd xd))
4 (float xy (* xd yd))
5 (float yy (* yd yd))
6 (float M (abs (- (- (* xx yy) (* xy xy))
7 (* 0.04 (+ xx yy) (+ xx yy)))))
8 (float res 0))
9 (if (< threshold M) (set res 255))

10 (set out res))))

Since, for point operators, the neighborhood should not
be available the names of the input images are mapped to
reference the current pixel-location in the respective images.

1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge gauss (:input base :output blurred :arch cuda)
5 (deflocal
6 :mask #.(sample-filter #’gaussian 5 :sigma 1.5)
7 :aggregator +
8 :operator *))
9 (edge laplacian (:input blurred :output lapla :arch cuda)

10 (deflocal
11 :mask ((-1 -1 -1)
12 (-1 8 -1)
13 (-1 -1 -1))
14 :aggregator +
15 :operator *
16 :finally (set accum.x (- 255 (fabs accum.x))
17 accum.y (- 255 (fabs accum.y))
18 accum.z (- 255 (fabs accum.z)))))
19 (edge to-grayscale (:input lapla :output gray :arch cuda)
20 (defpoint ()
21 (decl ((float out (+ (* 0.2126 (lapla 0))
22 (* 0.7152 (lapla 1))
23 (* 0.0722 (lapla 2)))))
24 (set (gray 0) out
25 (gray 1) out
26 (gray 2) out))))
27 (edge gauss2 (:input gray :output output :arch cuda)
28 (deflocal
29 :mask #.(sample-filter #’gaussian 7 :sigma 4)
30 :grayscale t
31 :aggregator +
32 :operator *))
33 (edge store-out (:input output)
34 (store-image :file "out.png")))

Figure 5: The complete filter graph that transforms
the image shown in Figure 1 (a) to that of (d).

4.2 Filter Graphs
As visible in the short graph given in Figure 3, the body of a
filter graph consists of the edges that describe how images are
transformed. Note that the body of the graph is evaluated
and thus can also hold arbitrary forms, for example a set of
user- or subdomain-specific macrolets (see below).
In our current implementation the roots of the graph (load

operations) are found and used as a seed for topological
sorting. Inconsistent graphs (e.g. containing unavailable
input nodes) are rejected. Input and output is meant to be
executed on the host-CPU, however this is by no means a
systematic restriction and, in a future version, we plan on
being able to connect Chipotle to hardware-rendered input
images or interactive display using OpenGL.
Expanding on the example of using a Laplace operator at

the outset of Section 4.1 the filtered version of Figure 1 (a),
shown in (b), exhibits strong noise. This is due to the
fact that the detection operator picks up very fine detail.
Therefore it is common to pre-process images with a low-pass
filter to remove small-scale detail prior to detection operators.
Figure 1 shows further versions where the image (c) has been
filtered with a Gaussian kernel before edge detection (and
converted to grayscale) and (d) with an additional low-pass
filter applied after edge detection to obtain a smoother image.
Figure 5 shows the complete filter graph for this process.
Note how the weights for the Gaussian kernels are computed
beforehand (line 6 and 29). Figure 6 lists the same algorithm,
but with a few convenience macros provided externally. For
an example with proper macros in a filter graph see Section 5.



1 (filter-graph laplacian
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (simple-filter base blurred
5 (:arch cuda :mask #.(sample-filter #’gauss 5 :sigma 1.5)))
6 (simple-abs-filter blurred lapla
7 (:arch cuda :mask ((-1 -1 -1)
8 (-1 8 -1)
9 (-1 -1 -1))))

10 (grayscale-conversion
11 lapla gray :arch cuda)
12 (simple-filter gray output
13 (:arch cuda :mask #.(sample-filter #’gauss 7 :sigma 4))
14 :grayscale t)
15 (edge store-out (:input output)
16 (store-image :file "out.png")))

Figure 6: The same graph as shown in Figure 5,
however with a few convenience macros.

T

B

RL

TL TR

BL BR

NO

Figure 7: Boundary checks are required to ensure
that only valid pixel locations are queried (left). To
remove irrelevant bounds checks (e.g. for the inner
part of the image, labelled NO) the image is parti-
tioned (right).

4.3 Checked Memory Access
The local operators shown above are notationally very simple
and do not contain explicit boundary checks. These checks
are automatically introduced for the iteration over the filter
mask such that, for example, when accessing pixels to the
right of the target pixel’s location Chipotle only inserts
checks for the right image border (see Figure 7).
For accessing locations outside the image I(x, y) (i.e. x 6∈
{0, . . . , w−1}∨y 6∈ {0, . . . , h−1}) different modes for chang-
ing the input coordinates, inspired by OpenGL’s texture
wrapping functions [19], are provided. The keyword param-
eter :wrap can be used to this end to compute x′, y′ with
mirror (x′ = w − x), wrap (x′ = x mod w) and clamp (x′ =
min(w−1, max(0, x))). Furthermore, border (I(x, y) = const)
provides a constant border color.
In order to efficiently compute a filter over large images,

it is also possible to partition the input image into areas
requiring different boundary checks [11]. Since local filters
usually employ a very small filter mask compared to the im-
age size this ensures that no boundary checks are performed
at all for the inner, and largest, part of the image. This
combines well with generating border conditions based on
the location in the filter mask: a check is only generated if
the position in the filter mask is, for example, to the left
and the active region after partitioning includes the left im-
age edge. In the setting shown in Figure 7 (left), the local
operator requires checked accesses only towards the right.
Figure 7 (right) shows the different regions. Inspired by
HIPAcc’s implementation we provide a single function that
checks for the appropriate boundary-handling scheme to be
used and jumps to it. The benefit of this scheme is that

load-base
[arch: cpu]

base
[storage: cpu]

to-grayscale

[arch: cuda]

out
[storage: ?]

store-base
[arch: cpu]

load-base
[arch: cpu]

base
[storage: cpu]

to-gpu

[arch: memcpy]
transition

[storage: cuda]

to-cpu

[arch: memcpy]
transition

[storage: cpu]

to-grayscale

[arch: cuda]

out
[storage: cuda]

store-base
[arch: cpu]

Figure 8: Top: Execution plan for the trivial graph
shown in Figure 9 (top). Images are rectangular
nodes, operators rounded. Bottom: Plan for the
same graph, but with :arch cuda for the point operator,
including transition edges and images.

it maps well to our target architectures (CUDA, SSE and
AVX) as long as it does not introduce divergence, which is
easily ensured (see Section 4.4).

4.4 Heterogeneous Image Processing
Chipotle allows transforming its input programs to SSE
and AVX with multi-threading as well as to CUDA. The
target architecture of an image operation can be specified via
the :arch parameter (see Figure 3). Note that different target
architectures can be mixed freely in the same program.
For SSE and AVX the operations map to multi-threaded,

two dimensional iterations over the input image. The speci-
fied operation (for local operators including the iteration over
the filter mask) is then executed in groups of 4 (SSE) or 8
(AVX) pixels. This is achieved by automatically vectorizing
of the provided code. To this end we map the content of
declarations ((decl (...)...) to appropriate vectorized types
and transform the user-provided arithmetic operations to
corresponding vectorized versions. We also sequentialize
conditional statements and track the masks of the true and
false cases to ensure correct merging. Figure 9 shows an
example of these operations for a very simple point operator,
converting a color image to grayscale.
For operators to be instantiated for CUDA we generate a

kernel function and a host-stub that addresses appropriate
parameter forwarding. Transferring image data to the GPU
and back to the host memory is implicit in the graph. Host-
only operations such as loading and storing images (see
Section 4.2 on this limitation) force the initial and final
locations of image data. Furthermore, edges that operate
on CUDA require that their input and output be present
on the GPU. This is resolved by traversing the filter graph
in order and introducing transition edges and images where
appropriate. The location of images is propagated through
the graph and only switches on the previously introduced
transition nodes. For operators that do not specify a target
architecture it is propagated similarly, to avoid expensive
host/device transfers.
When targeting CPU vector instructions (SSE or AVX)

or parallel GPU code (CUDA) we take care to incorporate
the execution width in boundary handling conditions. For
example, with AVX the generated code executes an 8 × 1
image region using a single control flow. If different paths
of control flow are to be applied within such a group the
code must be sequentialized. Therefore, bounds checks are
conservatively clamped to multiples of 8 in the x direction
for AVX. For CUDA, where the execution configuration is
more flexible, borders are adjusted accordingly.



1 (filter-graph example
2 (edge load-base (:output base)
3 (load-image :file "test.jpg"))
4 (edge gray (:input base :output out :arch sse)
5 (defpoint ()
6 (decl ((const float r (base 0))
7 (const float g (base 1))
8 (const float b (base 2))
9 (const float luma (+ (* 0.2126 r) (* 0.7152 g)

10 (* 0.0722 b)))
11 (float res))
12 (if (> luma .5)
13 (set res luma)
14 (set res 0))
15 (set (out 0) res))))
16 (edge store (:input out)
17 (store-image :file "out.png")))

1 void gray(unsigned char *base, unsigned char *out, unsigned int w, unsigned int h)
2 {
3 unsigned int vecLength = (w * h) - ((w * h) % 4);
4 const __m128 xmm_constant_0_5__165 = _mm_set1_ps(5.00000000e-1);
5 const __m128 xmm_constant_0_0722__164 = _mm_set1_ps(7.22000000e-2);
6 const __m128 xmm_constant_0_7152__163 = _mm_set1_ps(7.15200000e-1);
7 const __m128 xmm_constant_0_2126__162 = _mm_set1_ps(2.12600000e-1);
8 const __m128 xmm_constant_1_0__161 = _mm_set1_ps(1.00000000e+0);
9 for (unsigned int i = 0; i < vecLength; i += 4) {

10 //Load: (base 2) to xmm290
11 const __m128i xmm291 = _mm_cvtsi32_si128((*((const int*)
12 &base[(i + (2 * w * h))])));
13 const __m128i xmm292 = _mm_unpacklo_epi8(xmm291, _mm_setzero_si128());
14 const __m128i xmm293 = _mm_unpacklo_epi16(xmm292, _mm_setzero_si128());
15 const __m128 xmm290 = _mm_cvtepi32_ps(xmm293);
16 //Load: (base 1) to xmm289
17 const __m128i xmm294 = _mm_cvtsi32_si128((*((const int*)
18 &base[(i + (1 * w * h))])));
19 const __m128i xmm295 = _mm_unpacklo_epi8(xmm294, _mm_setzero_si128());
20 const __m128i xmm296 = _mm_unpacklo_epi16(xmm295, _mm_setzero_si128());
21 const __m128 xmm289 = _mm_cvtepi32_ps(xmm296);
22 //Load: (base 0) to xmm288
23 const __m128i xmm297 = _mm_cvtsi32_si128((*((const int*)
24 &base[(i + (0 * w * h))])));
25 const __m128i xmm298 = _mm_unpacklo_epi8(xmm297, _mm_setzero_si128());
26 const __m128i xmm299 = _mm_unpacklo_epi16(xmm298, _mm_setzero_si128());
27 const __m128 xmm288 = _mm_cvtepi32_ps(xmm299);
28 const __m128 r = xmm288;
29 const __m128 g = xmm289;
30 const __m128 b = xmm290;
31 const __m128 luma = _mm_add_ps(
32 _mm_add_ps(_mm_mul_ps(xmm_constant_0_2126__162, r),
33 _mm_mul_ps(xmm_constant_0_7152__163, g)),
34 _mm_mul_ps(xmm_constant_0_0722__164, b));
35 __m128 res;
36 const __m128 cond395 = _mm_cmpgt_ps(luma, xmm_constant_0_5__165);
37 const __m128 mask396 = cond395;
38 res = _mm_or_ps(_mm_and_ps(mask396, luma), _mm_andnot_ps(mask396, res));
39 const __m128 mask397 = _mm_andnot_ps(cond395,
40 _mm_set1_ps(xmm_constant_1_0__161));
41 res = _mm_or_ps(_mm_and_ps(mask397, 0), _mm_andnot_ps(mask397, res));
42 //Store: (out 0)
43 const __m128i xmm1129 = _mm_cvtps_epi32(res);
44 const __m128i xmm1130 = _mm_packs_epi32(xmm1129, xmm1129);
45 const __m128i xmm1131 = _mm_packus_epi16(xmm1130, xmm1130);
46 (*((int*)&out[(i + (0 * w * h))])) = _mm_cvtsi128_si32(xmm1131);
47 }
48 for (unsigned int i = vecLength; i < (w * h); ++i){
49 const float r = base[i + (0 * w * h)];
50 const float g = base[i + (1 * w * h)];
51 const float b = base[i + (2 * w * h)];
52 const float luma = (2.12600000e-1 * r) + (7.15200000e-1 * g)
53 + (7.22000000e-2 * b);
54 float res;
55 if (luma > 5.00000000e-1)
56 res = luma;
57 else
58 res = 0;
59 out[i + (0 * w * h)] = res;
60 }
61 }

Figure 9: Top: Chipotle input graph for converting
a color image to grayscale. Bottom: Generated SSE
code for the gray edge.

i = 0

i = 1

i = 2

i = 3

Figure 10: À-Trous filtering: Iterative application of
a small filter with increasing gap between samples.

5. EXAMPLES
In this section we provide two examples of using Chipo-
tle and describe further language features and practical
considerations that arise.

5.1 Edge-Avoiding À-Trous Filter
Many image processing algorithms (e.g. the night filter fol-
lowing this example) require an image smoothing step that
does not filter across edges, that is, a filter that smoothes
regions that are similar, but maintains the sharpness of the
image. This effect can be achieved by using a bilateral fil-
ter [21]. Such filters do not only weight pixel values by their
spatial distance (such as the previous local fiters, e.g. the
Gauss kernel), but also by difference in value. However, due
to non-linearity, these filters are not separable and are thus
very expensive to compute for large regions.

A common way to accelerate the computation of this filter
is using the À-Trous (with holes) algorithm [18], where a
filter with small support is iteratively applied while increasing
the image-space gap between the sample locations in each
iteration. Figure 10 illustrates this for a one-dimensional
filter. Such a filter is easily constructed by filling in the
appropriate number of zero-entries in the filter mask and
it can then be used as a simple local operator. The large
neighborhood introduced by this is easily reduced when
checking for zero-coefficients while unrolling the loop over
the local filter. Thus, for a Gaussian 3× 3 À-Trous filter at
iteration 3 the filter mask is 17× 17 but the actual number
of operations (and bounds checks, if appropriate) is still 9.
Our macro, which provides the code for the edge-avoiding

À-Trous filter, is given in Figure 11. It shows how more
complicated operators can be made available to various filter
graphs (see the next example, for instance). As the bilateral
filter is not a simple accumulation we exploit the flexibility
of our deflocal implementation. After fixing parameter and
filter names at the beginning, we set up our accumulators and
reference values in line 12. There, r0 references the red color
component at the pixel of the filter’s center. We accumulate
color to r, g and b and also accumulate the weight, W, by
which the result must normalized. The provided :codelet is
then evaluated for the non-zero entries of the filter mask
and combines the weights in the domain (i.e. the mask’s
value) and in the range (i.e. weighted by similarity, e.g. by
an exponential term). Finally, we normalize the result and
write it back to memory.

5.2 Night Tonemapping
The standard method of transforming images taken under
daytime lighting conditions to look as if taken by night is by
reducing brightness, blurring similar colors (reducing acuity),
and shifting the colors towards more bluish tones [20]. In
our implementation of such an algorithm we first blur similar
regions in the input image by using the bilateral filter shown
in the previous example. After a few iterations of this local
operator we compute the actual scotopic image by applying
a blue shift. To this end we follow Jensen et al. [6] and
first convert the image to the XY Z color space, reduce the
brightness, Y , compute the scotopic luminance [9], V , and
use it to compute a darkened image that is shifted to a more
bluish tone. Finally, we convert the image back to the RBG
color space. Figure 12 shows the effect computed by the
filter graph given in the lower part of Figure 11.



1 (defmacro atrous-step (n &key (pre "atrous") input output arch)
2 (let ((in (cl:if input input
3 (cintern (format nil "~a~a" pre (cl:1- n)))))
4 (out (cl:if output output
5 (cintern (format nil "~a~a" pre n)))))
6 ‘(edge ,(cintern (format nil "compute-~a~a" pre n))
7 (:input ,in :output ,out :arch ,arch)
8 (deflocal
9 :mask ,(atrous ’((0.057118 0.124758 0.057118)

10 (0.124758 0.272496 0.124758)
11 (0.057118 0.124758 0.057118)) n)
12 :initially ((float r0 (/ (,in 0 0 0) 255.0f))
13 (float g0 (/ (,in 0 0 1) 255.0f))
14 (float b0 (/ (,in 0 0 2) 255.0f))
15 (float r 0) (float g 0) (float b 0)
16 (float W 0))
17 :codelet
18 (decl ((float R (/ (,in rx ry 0) 255.0f))
19 (float G (/ (,in rx ry 1) 255.0f))
20 (float B (/ (,in rx ry 2) 255.0f))
21 (float w0 (mask rx ry))
22 (float rd (- R r0))
23 (float gd (- G g0))
24 (float bd (- B b0))
25 (float w1 (+ (^2 rd) (^2 gd) (^2 bd))))
26 (set w1 (* (fminf 1.0f (expf (- (* w1 1)))) w0))
27 (set W (+ W w1))
28 (set r (+ r (* R w1))
29 g (+ g (* G w1))
30 b (+ b (* B w1)))))
31 :finally (set (,out 0) (* 255.0f (/ r W))
32 (,out 1) (* 255.0f (/ g W))
33 (,out 2) (* 255.0f (/ b W)))))))

1 (defmacro nightvision-filter (&key (iterations 3))
2 ‘(filter-graph blub
3 (edge load-base (:output base) (load-image :file "test.jpg"))
4
5 (atrous-step 0 :input base)
6 (atrous-step 1)
7 ,@(loop for i from 1 to (cl:1- iterations)
8 collect ‘(atrous-step ,i))
9 (atrous-step ,iterations :output prefiltered)

10
11 (edge scoto (:input prefiltered :output scotopic :arch cuda)
12 (defpoint ()
13 (decl ((float r (prefiltered 0))
14 (float g (prefiltered 1))
15 (float b (prefiltered 2))
16 (float X (to-X r g b)
17 (float Y (* (to-Y r g b) 0.33f))
18 (float Z (to-Z r g b))
19 (float V (scotopic-luminance X Y Z))
20 (float W (+ X Y Z))
21 (float s (* Y 0.2))
22 (float xl (/ X W))
23 (float yl (/ Y W))
24 (const float xb 0.25)
25 (const float yb 0.25))
26 (set xl (+ (* (- 1.0f s) xb) (* s xl))
27 yl (+ (* (- 1.0f s) yb) (* s yl))
28 Y (+ (* V 0.4468f (- 1 s)) (* s Y))
29 X (/ (* xl Y) yl)
30 Z (- (/ X yl) X Y))
31 (decl ((float rgb_r (to-r X Y Z))
32 (float rgb_g (to-g X Y Z))
33 (float rgb_b (to-b X Y Z)))
34 (set (scotopic 0) (fminf 255.0f (fmaxf 0.0f rgb_r)))
35 (set (scotopic 1) (fminf 255.0f (fmaxf 0.0f rgb_g)))
36 (set (scotopic 2) (fminf 255.0f (fmaxf 0.0f rgb_b)))))))
37
38 (edge store-scotopic (:input scotopic)
39 (store-image :file "night.jpg"))))
40
41 (nightvision-filter :iterations 3)

Figure 11: Top: Our macro that generates different
iterations of the edge-avoiding À-Trous blur filter.
Bottom: The filter is used as a pre-process for the
night filter.

Figure 12: Input image (left) and night-filtered ver-
sion (right). Note how not only the tone changed,
but also many details are blurred out while edges
(such as the roof, columns and the balcony) are still
clearly visible.

6. EVALUATION
In the following we give a brief evaluation of implementing
filter graphs using our DSL, Chipotle, and compare them
to HIPAcc. We focus on the night filter with three iterations
of edge-avoiding À-Trous filtering (see Section 5.1) followed
by night tonemapping (see Section 5.2). This corresponds to
evaluating line 41 in the lower part of Figure 11.
In terms of filtering performance CUDA code generated by

HIPAcc takes 14.7 ms to filter the 1754×1280 image shown in
Figure 12 (left) on a Nvidia Geforce GTX 680 graphics card.
HIPAcc’s SSE2 version takes 400 ms running on a Intel Xeon
E5-1620 processor running at 3.50 GHz, using OpenMP
for parallelization. Our code generated by Chipotle runs
equally fast at 14.9 ms on CUDA, while our SSE2 version
lags behind at 901 ms, with the same hardware. Due to the
use of domain knowledge and the ability to generate code for
special cases (e.g. for border handling) these computation
times are hard to achieve with hand-written code [11].
Regarding code size there are two factors we consider:

firstly the size of the code written in the DSL, and secondly
the size of the DSL’s code base itself, which is of particular
importance when considering extensions and maintenance of
the DSL. The HIPAcc-version of the night-filter shown in Fig-
ure 11 (bottom) consists of 264 lines of code. The complete
code for use with Chipotle, including the expansion of a
simple input mask to an À-Trous filter (atrous, see line 9 in
Figure 11 (top)) and the edge-avoiding filter, totals 85 lines.
This is mainly due to the fact that our notation contains
almost no boilerplate code.
The HIPAcc distribution we used to take the above mea-

surements consists of 48941 lines of code. As described
earlier this includes a number of additional back-ends that
are not available for Chipotle (most notably Renderscript
and VivadoHLS for which there is no support in C-Mera).
However, even with the additional back-ends the code base
appears immense when compared to Chipotle’s 978 lines of
code (as-is, and including vectorization).

7. CONCLUSION
In this paper we presented our new image processing DSL,
Chipotle, and showed how easily it is constructed using
an existing, Common Lisp-based tool chain. At only 2% of
the code size of competing methods our DSL yields highly
optimized code that runs on-par with the state of the art on
GPUs using CUDA. Our SSE2 version runs at around 50%
the performance of HIPAcc’s vectorized output. It should be



noted that, even in this case, our performance is significantly
faster than results from using a compiler’s auto-vectorization
routines as these cannot rely on domain knowledge. However,
we believe that this performance gap is an artefact of our not
yet fully matured vectorization routines and that Chipotle
will catch up with HIPAcc shortly. We further believe that
extensions to our DSL are much simpler as its implementation
is very short and uses higher-level programming paradigms,
most notably Common Lisp macros and feature-oriented
programming [16].
We also showed that the implementation of a filter graph

using Chipotle is only around 33% of the code size of the
corresponding HIPAcc implementation and that the DSL code
itself is still amenable to further abstractions and simplifica-
tions using macros. Thus, we are confident that Chipotle
can compete with state of the art image processing DSLs
while increasing productivity both on the level of the DSL
users and implementors.

Acknowledgments
The authors gratefully acknowledge the generous funding by
the German Research Foundation (GRK 1773).

8. REFERENCES
[1] I. N. Bankman. Handbook of Medial Image Processing

and Analysis. Academic Press, Burlington, second
edition edition, 2009.

[2] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. A
heterogeneous parallel framework for domain-specific
languages. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 89–100, Oct 2011.

[3] M. Christen, O. Schenk, and H. Burkhart. Patus: A
code generation and autotuning framework for parallel
iterative stencil computations on modern
microarchitectures. In Proceedings of the 2011 IEEE
International Parallel & Distributed Processing
Symposium, IPDPS ’11, pages 676–687, 2011.

[4] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and
J. Vitek. Terra: A multi-stage language for
high-performance computing. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 105–116,
New York, NY, USA, 2013. ACM.

[5] C. Harris and M. Stephens. A combined corner and
edge detector. In In Proc. of Fourth Alvey Vision
Conference, pages 147–151, 1988.

[6] H. W. Jensen, S. Premoze, P. Shirley, W. B.
Thompson, J. A. Ferwerda, and M. M. Stark. Night
rendering. Technical Report UUCS-00-016, Computer
Science Department, University of Utah, Aug. 2000.

[7] S. Kamil, D. Coetzee, and A. Fox. Bringing parallel
performance to python with domain-specific selective
embedded just-in-time specialization. In Proceedings of
the Python for Scientific Computing Conference
(SciPy), 2011.

[8] M. Köster, R. Leißa, S. Hack, R. Membarth, and
P. Slusallek. Code Refinement of Stencil Codes. Parallel
Processing Letters (PPL), 24(3):1–16, Sept. 2014.

[9] G. W. Larson, H. Rushmeier, and C. Piatko. A
visibility matching tone reproduction operator for high
dynamic range scenes. IEEE Transactions on
Visualization and Computer Graphics, 3(4):291–306,
Oct. 1997.

[10] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar
2004.

[11] R. Membarth, O. Reiche, F. Hannig, J. Teich,
M. Körner, and W. Eckert. HIPAcc: A domain-specific
language and compiler for image processing. IEEE
Transactions on Parallel and Distributed Systems,
27(1):210–224, 2016.

[12] R. T. Mullapudi, V. Vasista, and U. Bondhugula.
Polymage: Automatic optimization for image
processing pipelines. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’15, pages 429–443, 2015.

[13] NVIDIA Corporation. NVIDIA CUDA C Programming
Guide, September 2015.

[14] NVIDIA Corporation. Parallel Thread Execution ISA
Version 4.3, September 2015.

[15] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’13, pages 519–530, New York, NY, USA, 2013.
ACM.

[16] K. Selgrad, A. Lier, F. Köferl, M. Stamminger, and
D. Lohmann. Lightweight, generative variant
exploration for high-performance graphics applications.
In Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming:
Concepts and Experiences, GPCE 2015, pages 141–150,
New York, NY, USA, 2015. ACM.

[17] K. Selgrad, A. Lier, M. Wittmann, D. Lohmann, and
M. Stamminger. Defmacro for C: Lightweight, ad hoc
code generation. In Proceedings of ELS 2014 7rd
European Lisp Symposium, pages 80–87, 2014.

[18] M. J. Shensa. The discrete wavelet transform: wedding
the a trous and mallat algorithms. IEEE Transactions
on Signal Processing, 40(10):2464–2482, 1992.

[19] D. Shreiner and T. K. O. A. W. Group. OpenGL
Programming Guide: The Official Guide to Learning
OpenGL, Versions 3.0 and 3.1. Addison-Wesley
Professional, 7th edition, 2009.

[20] W. B. Thompson, P. Shirley, and J. A. Ferwerda. A
spatial post-processing algorithm for images of night
scenes. J. Graphics, GPU, & Game Tools, 7(1):1–12,
2002.

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray
and color images. In Proceedings of the Sixth
International Conference on Computer Vision, ICCV
’98, pages 839–, Washington, DC, USA, 1998. IEEE
Computer Society.


