
A Case Study in Implementation-Space Exploration

Alexander Lier Linus Franke Marc Stamminger Kai Selgrad

Computer Graphics Group, Friedrich-Alexander University Erlangen-Nuremberg, Germany

{alexander.lier, linus.franke, marc.stamminger, kai.selgrad}@fau.de

ABSTRACT
In this paper we show how a feature-oriented development
methodology can be exploited to investigate a large set of
possible implementations for a real-time rendering algorithm.
We rely on previously published work to explore potential
dimensions of the implementation space of an algorithm to
be run on a graphics processing unit (GPU) using CUDA.
The main contribution of our paper is to provide a clear
example of the benefit to be gained from existing methods
in a domain that only slowly moves toward higher level ab-
stractions. Our method employs a generative approach and
makes heavy use of Common Lisp-macros before the code
is ultimately transformed to CUDA.

1. INTRODUCTION
When developing algorithms to be used in time-critical ap-
plication domains, such as real-time rendering, many differ-
ent implementation variants need to be evaluated to arrive
at the method that best exploits the available resources.
This is even more true in research where the spectrum of
solutions to investigate is potentially larger. Higher-level
languages such as Common Lisp, can ease this process of
finding the best solution considerably. However, while pro-
viding great flexibility and productivity, they are not avail-
able in all domains and for all applications. This can be
due to technical limitations (vendor-specific languages, com-
patibility) or policies (certified processes, coherent working
environment) as well as due to resistance from developers
unwilling to embrace change.
In earlier work we proposed formulating C and similar

languages in an S-Expression syntax and only transforming
them to their native notation as late in the process as pos-
sible [22] using C-Mera1. This allows employing a macro-
heavy methodology to generate many different variants of
an input program, and to express it on a very high level.
We believe that this scheme, even if very unfamiliar to pro-
grammers used to C, can help make higher level paradigms
1github.com/kiselgra/c-mera

European Lisp Symposium 2016, Krakow, Poland
Copyright c© 2016 The Authors
European Lisp Symposium 2016, Krakow, Poland

available to that domain (also by supporting guerilla adop-
tion [22, 21]).
For domain exploration we recently proposed employing

a feature-oriented programming paradigm to implement the
exploration process [21]. To this end we use cm-fop2, a
very lightweight library that provides this feature-oriented
programming model to C-Mera.
In our case study we show how these methods can be

applied to find highly efficient implementations of a post-
processing depth of field effect for real-time rendering.
The following section, related work, is divided into two

parts. At first we cover generative meta-programming tech-
niques followed by rendering methods for depth of field. Af-
ter a short review of C-Mera in a dedicated section, we de-
pict several aspects and details of our depth of fild algorithm.
Details and examples of the actual meta programming ap-
proach are given in the implementation section. Thereafter,
the generated resulting code is discussed and evaluated, and
our findings are summarized in a short conclusion.

2. RELATED WORK
In this paper we propose employing a generative methodol-
ogy to explore the space of possible implementations of real-
time depth of field rendering algorithms. Section 2.1 gives
a short review of generative programming techniques while
Section 2.2 provides an introduction to depth of field ren-
dering. The latter is divided further, whereby the first part
discusses depth of field in general. Afterwards, the difference
between gathering and scattering methods is elucidated, fol-
lowed by a description of how the scattering algorithm can
be harnessed for GPU application.

2.1 Generative Meta-Programming
In the following we will focus on related work concerned with
general purpose methods providing domain-specific abstrac-
tions. For a comprehensive summary of general generative
programming methods see Czarnecki and Eisenecker [4].
The most ubiquitous approach to generative programming

is C++ template meta programming (TMP) [26, 4]. It has
been applied to a wide range of problems, also in graphics
(for example with RTfact [23], a ray tracing library). We
believe that, while certainly convenient and unobtrusive to
use when working in a C++ environment, exploration is se-
riously impaired by this approach as the maintenance over-
head of the meta code becomes a burden in itself [7, 13, 21].
Also note that TMP is only available in C++, only partially

2github.com/kiselgra/cm-fop

Figure 1: Rendered image (top) and post processed
image showing depth of field (bottom).

in CUDA [15] and not in other, very similar languages such
as OpenCL [8] and GLSL [11].

C-Mera is a multi-stage programming language [24], that
is, a language that is embedded in a host language (in our
case Common Lisp). Embedded languages are compiled
into the host language and the resulting program is then
further compiled or interpreted. In the case of C-Mera
the evaluation of the input program constructs the internal
Common Lisp representation that is then pretty printed to
C-style code.
Examples of other multi-stage programming languages are

MetaOCaml [3], an extension for staging OCaml, Terra [6],
a low-level language embedded in Lua, and AnyDSL [14],
which gives the programmer explicit control over when cer-
tain parts of the program are to be evaluated.
Feature-oriented programming [17, 2] offers additional de-

grees of freedom regarding programming versatility. A fea-
ture is a unit of functionality that provides an interface for
configuration. A feature-oriented program is then composed
of features that together provide its implementation. This
scheme aims to provide well-structured programs that can
be configured to provide different incarnations by varying
the implementations of the underlying features [1]. Our
work relies heavily on feature-oriented programming, as it
is demonstrated in more detail in Section 5.

2.2 Depth of Field Rendering
Depth of field is a physical effect caused by the finite size
of the lens in an imaging system (e.g. in a camera or in the
eye). Rays of light are collected through the aperture of
the system (the pupil of the eye) and focused by the lens
on the image sensor (the retina). As the refractive power
of the lens can only be in one state at any given time only
light arriving from a given distance is actually in focus and
mapped to a single point on the sensor. Light from a dif-
ferent distance is mapped to a circular region (or, in case
of a camera, to a region in the shape of the camera’s aper-
ture, known from polygonal shapes of out-of-focus lights in

movies and artistic photographs). This circle of confusion
is the reason out-of-focus objects appear blurred. Figure 1
shows an example computed using our implementation of a
post-processing method.
When synthesizing images this is an important effect for

generating more plausible results, as the depth perception is
skewed for scenes that are shown completely in-focus. De-
mers [5] describes this effect in great detail and provides an
overview of methods of generation. In the following we will
only touch on a few methods and refer to Demers [5] for
more details.

Gathering vs Scattering. The most common method to
implement depth of field is by adding it to an previously
generated image. This can be done in two ways, namely
via gathering or scattering. Gathering approaches apply a
(bilateral) image-space blur filter where the filter’s size de-
pends on the current pixel’s circle of confusion [5, 18]. The
main limitation of these methods is that the ordering of the
participating pixels is not considered correctly and only a
weighted average is computed [19]. With scattering meth-
ods the problem is approached differently: the rendered im-
age is interpreted as a point-sampled scene representation
and the individual points are scaled to form circles accord-
ing to the original pixel’s circle of confusion. These scaled
points (“splats”) are then sorted and accumulated (in order)
as semi-transparent objects, thus ensuring correct weight-
ing [16, 12]. The limitation of these methods is that they
require a global ordering of the splats be established, which
is an expensive operation.
Recent work on tiled shading [9] and particle accumula-

tion [25] can be applied to remove this limitation of scat-
tering depth of field algorithms in a straightforward fash-
ion [19].

Fast GPU Particle Accumulation. High-performance par-
ticle accumulation can be implemented by employing a tiling-
based scheme that maps well to graphics hardware. Instead
of globally sorting the particles, they are binned into screen-
space tiles (e.g. of 16×16 pixels, potentially a 1 : n mapping)
and the tiles are then sorted independently and in paral-
lel [25]. The computation of the contribution for each pixel
is then a simple process that traverses the list of particles in
the pixel’s associated tile. This process, too, maps very well
to hardware as (in CUDA terms) the execution can be set
up such that each thread-block traverses a single tile, and
thus the threads in a warp run with great coherency.
In Section 4 we list choices of how to implement the accu-

mulation phase of this technique for depth of field rendering.
We also show how C-Mera, together with cm-fop, can be
used to explore the space of possible solutions with feature-
oriented programming.

3. BRIEF REVIEW OF C-Mera
C-Mera is a simple transcompiler embedded in Common
Lisp. It allows writing programs in an S-Expression syntax
that is transformed to C-style code providing simple exten-
sion for languages with similar syntax on top of the core C
support. For example, the C-Mera distribution provides
modules for C++, CUDA, GLSL and OpenCL. The main
goal of providing an S-Expression syntax is to write the com-
piler such that it evaluates the syntax to construct a syn-

1 (for ((int i 0) (< i num-per-tile) ++i)
2 (decl ((dataSpl elem (aref lists tile-index i))
3 (int dist-x (- (funcall elem.x) gid.x))
4 (int dist-y (- (funcall elem.y) gid.y))
5 (float coc-sq (funcall elem.sq-coc)))
6 (if (<= (+ (* dist-x dist-x) (* dist-y dist-y)) coc-sq)
7 (decl ((float area (* coc-sq 3.1415f))
8 (float alpha (/ 1.0f area)))
9 (+= color.x (* alpha-dest alpha elem.r))

10 (+= color.y (* alpha-dest alpha elem.g))
11 (+= color.z (* alpha-dest alpha elem.b))
12 (*= alpha-dest (- 1.0f alpha))))))

1 for (int i = 0; i < num_per_tile; ++i){
2 dataSpl elem = lists[tile_index][i];
3 int dist_x = elem.x() - gid.x;
4 int dist_y = elem.y() - gid.y;
5 float coc_sq = elem.sq_coc();
6 if (((dist_x * dist_x) + (dist_y * dist_y)) <= coc_sq) {
7 float area = coc_sq * 3.1415f;
8 float alpha = 1.0f / area;
9 color.x += (alpha_dest * alpha * elem.r);

10 color.y += (alpha_dest * alpha * elem.g);
11 color.z += (alpha_dest * alpha * elem.b);
12 alpha_dest *= (1.0f - alpha);
13 }
14 }

Figure 2: The most basic particle accumulation loop
as used as input for C-Mera (top) and the resulting
generated C-style code (bottom).

tax tree when the input program is read, thereby allowing
interoperability with the Common Lisp-system, most im-
portantly by providing support for Lisp-style macros. To
keep this part short we refer to the original C-Mera pa-
per [22] for a more detailed description of the system and
its implementation.
With the use of macros the input program no longer rep-

resents a plain syntax tree, but a semantically annotated
tree that is transformed according to the implementation of
the semantic nodes (macros). The utility of such a system
ranges from simple, ad-hoc abstractions and programmer-
centric simplifications [22] to providing otherwise hard to
achieve programming paradigms for C-like languages [21]
and even to fully fledged domain specific languages [20]. In
this paper we provide a case study of applying C-Mera to
provide a higher level programming paradigm for GPU al-
gorithm development.
Figure 2 shows an example from our application domain,

which is processed by C-Mera, and C-style code that is
generated by it. The overall appearances of the input (top)
and the generated code (bottom) resemble each other but
the former applies S-Expressions, whereas C-style syntax
and infix expressions are required in the latter. As can be
seen, C-Mera supports convenient and essential language
elements from C, for example the member accessor color.x
(line 10,11,12), infix increment ++i (line 1, top), type suffix
3.1415f (line 7, top), and further notations that are not
shown here. Additionally, C-Mera renames variable names
that are restricted in C, for example dist-x (line 6, top).

4. IMPLEMENTATION-SPACE
We focus our analysis on the accumulation of particles, which
can be described briefly as follows: Every pixel of the result-
ing image must be synthesized form a number of particles
that might affect it. To do so, the program has to iterate
through a previously sorted list with possible candidates in

reach that might affect the resulting pixel. Every tile, a
group of 16 × 16 pixels, has one associated list, therefore a
list is shared by 256 pixels.
The process of sorting the entries in the tile lists, as well

as the subsequent accumulation benefit greatly from a com-
pact memory layout in which single entries can be trans-
ferred en-bloc. For our CUDA implementation this means
that the entries should be no more than 16 bytes, such that
they can be encoded as uint4. However, the required fields
are the pixel’s (high resolution) color, screen-space position
and camera distance. This data can be stored compactly,
but the best choice not only depends on the number of bits
reserved for each entry, but also on the effort to unpack the
respective fields and how how likely they will be accessed.
In our implementation we tested two different basic node
layouts.
The most obvious point to evaluate different implementa-

tions is how the CUDA warp and block configuration is set
up and employed during traversal. Here we evaluated two
different approaches: Loading large chunks (256 elements)
of the tile-lists (with an average length of 1300) to a buffer
of shared memory, and then processing the list chunk-by-
chunk with all threads working in parallel on the same data.
This, however, requires synchronization after the data has
been loaded to ensure that it is available to all threads. The
second approach is to only load blocks of warp size (i.e. 32)
to shared memory and process smaller chunks. The bene-
fit of this approach is that no synchronization is necessary,
however, at the cost of smaller batches in the shared cache
and redundant loads on the block level.
To gain greater insight into the effect of blending front-to-

back vs back-to-front, both approaches have been analyzed.
Naturally, the front-to-back method performs better [25] as
it offers the option to terminate early when the pixel is sat-
urated. This leads to the question of how finely checking for
early termination is advisable: after each accumulation step,
or only after each chunk, which interacts with the aforemen-
tioned chunk size?
We also evaluated many small-scale optimizations such

as explicitly enabling caching to L1, storing vs computing
certain values and peeling off parts of loops to remove condi-
tionals from the inner loop. In the end we arrived at 320 dif-
ferent (and meaningful) combinations that are implemented
using cm-fop in 300 lines of feature definitions, feature im-
plementations and the algorithm-template that expand to
more than 16000 lines of CUDA code.

5. IMPLEMENTATION
As the previous section shows, our implementation space
expands into multiple dimensions; thus we must consider
and evaluate many versions of the accumulation loop, which
might differ heavily from each other and from the unopti-
mized version shown in Figure 2. Starting from the basic
implementation and with a rough draft of the desired varia-
tions, we can incrementally extend the existing solution with
functionalities, also in reaction to the results from previously
tested variants. This leads to an iterative and especially ex-
plorative programming methodology.
In this section we will discuss our meta implementation,

starting with an explanation of why we have chosen features
over plain macros. The following examples will at first fo-
cus on feature usage and later examine target and feature
interaction in more detail.

1 (defmacro early-out (target condition &body body)
2 (cond ((eql target ’no-early-out)
3 ‘(progn ,@body))
4 ((eql target ’blockwise-early-out)
5 ‘(if ,condition
6 (progn ,@body)
7 (break)))
8 (t
9 ‘(error "The target ~a is not specified" ’,target))))

Figure 3: Example macro implementation with mul-
tiple expansion possibilities.

From Macros to Features. Relying solely on Common
Lisp’s macro system to facilitate previously mentioned ex-
tensions has the risk of becoming tedious, since particular
variation points can mutually exclude each other and macros
do not support convenient configurability of their implemen-
tation. Therefore, if wanting to write a macro that combines
multiple varying results, one has to implement each of its
possible expansions inside a single block of conditionals. An
example of such a macro is given in Figure 3. Therefore,
we employ cm-fop, C-Mera’s library for feature-oriented
programming to ease this procedure. This library enables
using features that are essentially macros with a built-in sys-
tem that automatically implements and resolves conditional
expansion. A feature-oriented definition equivalent to the
macro from Figure 3 is shown in Figure 4. In contrast to
plain macros the feature system is able to recognize the de-
sired expansion code by means of a configuration variable,
which can be defined and stays valid within a lexical scope
and thus supports nesting of different configurations. Addi-
tionally, the feature system decouples the feature definition
from its implementations, with the result that the definition
of a feature is only required once and its likely multiple and
divergent implementations can be written individually. Fur-
thermore, writing a feature implementation does not require
to manually declare its dependencies, nor define conditional
expansion. Thus, unlike a macro that incorporates such
a behaviour, feature implementations only require minimal
boiler-plate code. Nevertheless, it should be mentioned that
cm-fop’s feature system relies on Common Lisp’s macro
and object system, but without the need to manually define
the conditional expansions, cm-fop improves the handling
of multiple implementations over plain macros considerably.

Feature Setup. As a first example we introduce a simple
feature to the algorithm from Figure 2. The most basic part
of extending the particle accumulation is to exit the loop
when the pixel is opaque because collecting further elements
will not change the resulting color. To do so we construct
a feature equal to the macro shown in Figure 3 that wraps
the body with an if-statement and uses a break operation
to exit the loop. The corresponding feature setup is shown
in Figure 4.
Before we implement features, we define their possible tar-

gets (lines 1 and 2). Features are defined once (line 4) and
support one implementation per target combination (lines 6
to 12). Targets can be derived from each other, as it is the
case here, thus the combination of the currently used most
specific target and its available implementations determine
the expanded code. For example, if the implementation for
blockwise-early-out is not given, but that target is used, the

1 (define-target no-early-out)
2 (define-target blockwise-early-out no-early-out)
3
4 (define-feature early-out (condition &body body))
5
6 (implement early-out (no-early-out)
7 ‘(progn ,@body))
8
9 (implement early-out (blockwise-early-out)

10 ‘(if ,condition
11 (progn ,@body)
12 (break)))

Figure 4: Construction of a feature for a conditional
break

more general no-early-out will be used. However, if imple-
mentations for more specific targets are given, but a less
specific target is used, the best fitting implementation (ac-
cording to CLOS’s [10] method lookup) is chosen. As can
be seen in Figure 4, the body for a feature implementation
is similar to the body of a standard macro, but there are
multiple implementations for the same feature. The upper
implementation (line 6 and 7) returns the body passed in
without modifications. The other one (line 9 to 12) splices
the body inside an if-statement, places the condition in the
designated position, and introduces a break-statement as
the else case.

Elementary Feature Utilization. The example application
shown in Figure 5 depicts the use of features (top) and their
resulting code (bottom), whereby feature applications are
highlighted in orange and targets in green. Multiple targets
can be combined with make-config into one single config-
uration (top, line 1 and 6). The with-config form takes a
configuration as an argument and declares it as locally valid
for features used within its lexical scope. Depending to the
configuration used, each early-out feature expands into dif-
ferent code.
The no-early-out target adds no further code nor changes

the body, whereas the blockwise-early-out target adds an if-
clause and a break-statement.
This behaviour is the essential element that we want to

utilize. Normally if we introduce additional variations, we
must clone and partially rewrite every version for every ad-
ditional divergence. Thus, the number of possible imple-
mentations to write grows exponentially. Our solution for
this problem, as we already proposed in previous work [21],
is to use a single, general implementation that handles each
diverging point individually by applying the proper feature
expansion.
Based on the examples from Figure 4 and Figure 5 an

applicable multi-variant-aware implementation is shown in
Figure 6. As can be seen, we now only require one imple-
mentation of the accumulation-loop that can expand into
multiple versions depending on the configuration passed in.

Pinpoint Implementation. By adding an ever increasing
amount of expansion possibilities to the unified implemen-
tation, we arrive at the most general implementation of the
accumulation loop, which is shown in Figure 7. This algo-
rithm template is capable of expanding into 320 versions of
the accumulation loop. Most of the features use (highlighted
in orange) are implemented similarly to previous examples

1 (with-config (make-config no-early-out)
2 (for ((int i 0) (< i num-per-tile) ++i)
3 (early-out (> alpha-dest 0.01)
4
5
6 (with-config (make-config blockwise-early-out)
7 (for ((int i 0) (< i num-per-tile) ++i)
8 (early-out (> alpha-dest 0.01)
9

1 for (int i = 0; i < num_per_tile; ++i){
2 dataSpl elem = lists[tile_index][i];
3 ...
4 }
5
6 for (int i = 0; i < num_per_tile; ++i){
7 if (> alpha_dest 0.01) {
8 dataSpl elem = lists[tile_index][i];
9 ...

10 }
11 }
12 else
13 break
14 }

Figure 5: Feature evaluation: Depending on the
configuration or targets used, highlighted in green
(top), the same features, highlighted in orange, ex-
pand into different resulting code (bottom)

and are mapped straightforwardly to one single element pre-
viously described in the implementation space in Section 4.
More sophisticated features are shown in Figure 8. These

features are used together to assemble one single variation
inside the implementation space. The given example gener-
ates code that iterates chunk-wise over an input list (loop-
over-blocks, lines 1 and 11)), after which the inner loop pro-
cesses the single chunk elements (process-blocks, lines 6, 22,
26). Process-blocks is not used directly within the feature-
implementation of loop-over-blocks, but appears later on, in-
side its body as seen in line 3 in Figure 7. Processing a list
chunk-wise requires a special case handling, since the last
iteration only processes the residual list elements.
One possibility to manage this is to check each iteration

step whether the currently processed chunk is the last one
and to set the upper limit of the inner loop according to the
number of remaining elements. A respective implementation
is shown in the upper part (line 1 to 9) of Figure 8. In
this case, loop-over-blocks does not distinguish between the
first blocks (0 <= i < iterations) and the last one (i ==
iterations), thus iterates over all chunks. The associated
feature (process-blocks, line 6), then limits the upper bound
for the inner loop (N) by setting it either to the standard
block-width (elems-per-iter) or, if the outer loop reached the
last element, to the size of the last chunk (last-iter-width).
In short, loop-over-blocks iterates over the complete range
of chunks and process-blocks tests whether the last chunk is
to be processed to set suitable limits for the inner loop.
A different approach handling the last chunk is shown in

the lower part (line 11 to 27) of Figure 8. The underly-
ing concept is to process the last chunk separately. Con-
sequently, the outer loop iterates over every chunk except
for the last one, which must be handled individually outside
the loop. The benefit of this method is that the condi-
tional assignment (line 7) can be omitted and the necessary
proces-blocks features (line 21 to 27) reduce their complexity.
Yet, as it can be seen, we now employ two, slightly differ-

1 (defmacro instantiate (config)
2 ‘(with-config ,config
3 (for ((int i 0) (< i num-per-tile) ++i)
4 (early-out (> alpha-dest 0.01)
5 ...
6
7 (instantiate (make-config no-early-out <do-this> ...))
8 (instantiate (make-config blockwise-early-out <skip-that> ...))

Figure 6: Single implementation for multiple vari-
ants

1 (with-iteration-bounds
2 (loop-over-blocks ,config
3 (early-out (> alpha-dest 0.01f)
4 (process-blocks
5 (load-current-element elem
6 (decl (((dist-type) dist-x (dist x))
7 ((dist-type) dist-y (dist y))
8 ((coc-type-in-node) coc-sq
9 (funcall elem.sq-coc)))

10 (if (<= (+ (* dist-x dist-x)
11 (* dist-y dist-y)) coc-sq)
12 (with-alpha
13 (set-color x r)
14 (set-color y g)
15 (set-color z b)
16 (set-sample)))))))
17 (sync-after-iteration)))

Figure 7: Multidimensional implementation with
features

ent proces-blocks features, which depend on different targets.
One deploys a loop, which iterates over the full range of the
block size, and the other one processes the width of the final
chunk.
To fuse the looped code with that of the last chunk, hav-

ing been processed separately, both of the described process-
blocks features need to be used. Since the algorithmic proce-
dure for every block is the same, the body of the loop-over-
blocks feature can be duplicated and used for both parts
sequentially. The corresponding implementation (lines 11
to 19) simply duplicates the forwarded body, whereby one
is placed within the for-loop (line 16) and the other is ap-
pended afterwards.
Both bodies are implemented at the same and cannot be

changed usefully by means of list modification at this point.
However, they still must generate different code. Therefore,
we substitute the currently valid configuration individually
for each body. Since it is not desirable to overwrite the con-
figuration completely, the newly introduced configurations
are composed of the targets previously passed in (config, line
15 and 18). These are already being used for the global con-
figuration, and extended by the respective, locally required
targets (full-block, line 15 and peel-block line 18). Eventually
we have two nearly equal sections, which expand into two
different specific implementations.
These examples were aimed at providing further insight

into how we approached the design of a merged implemen-
tation for all meaningful variants previously described in
Section 4.
In the following section we will evaluate each instance in

terms of their performance in order to identify the optimal
combination.

1 (implement loop-over-blocks (check-residual-block)
2 ‘(for ((int i 0) (<= i iterations) ++i)
3 (load-threads-local-data i)
4 ,@body))
5
6 (implement process-blocks (check-residual-block)
7 ‘(decl ((int N (? (== i iterations) last-iter-width

elems-per-iter)))
8 (loop-over-loaded-block (j N)
9 ,@body)))

10
11 (implement loop-over-blocks (peel-residual-block)
12 ‘(progn
13 (for ((int i 0) (< i iterations) ++i)
14 (load-threads-local-data i)
15 (with-config (make-config ,@config full-block)
16 (progn ,@body)))
17 (load-threads-local-data iterations)
18 (with-config (make-config ,@config peel-block)
19 (progn ,@body))))
20
21 (implement process-blocks (full-block)
22 ‘(loop-over-loaded-block (j elems-per-iter)
23 ,@body))
24
25 (implement process-blocks (peel-block)
26 ‘(loop-over-loaded-block (j last-iter-width)
27 ,@body))

Figure 8: Implementation for checking (top) and
peeling (bottom) residual list elements.

6. EVALUATION AND RESULTS
In this section we briefly evaluate the generator and result-
ing code of our generic implementation on a Nvidia Geforce
GTX Titan, 980, and 980Ti graphics card. We strive to an-
alyze each possible combination of aspects and GPU archi-
tecture to identify substantial coherences and special cases.
However, to cover every generated accumulation loop, we
have to consider 320 versions and testing all of them on
three GPUs results in 960 individual measurements.
All time measurements in the context of implementation

aspects and architectures are shown in Figure 9. It should
be noted that the visualization is normalized, thus the lower
bound is prepresenting the shortest processing time and the
upper bound the longest. In addition, for each graphics card
different values for upper and lower bounds were applied.
This representation was chosen due to better exposition of
specific patterns.

Performance Evaluation. The most performant combina-
tion for the Maxwell architecture (980 and 980Ti) is high-
lighted in green; for the Kepler architecture (Titan), it is
highlighted in blue. Interestingly, the latter is as well suit-
able for the Maxwell, but not vice versa. Despite the fact
that the best Titan measurement is only 0.1ms faster than
the slowest GTX 980Ti measurement, all GPUs share favor-
able implementation aspects. The resulting code of the best
implementation for the Maxwell architecture can be found
in the appendix in Figure 10.
A surprising insight is that it is not always the best choice,

as initially assumed, to implement an early-out behaviour.
As can be seen, all version highlighted in violet, the most ag-
gressive early-out method, are in most cases slower than ver-
sions highlighted in yellow, which are implemented with only
one exit attempt per processed block, and versions high-
lighted in red, which are implemented completely without
early-out mechanism. This being said, applying a Maxwell
GPU, a moderate early-out technique seems to be a better

choice over omitting early-out completely. Employing a Ke-
pler GPU, early-out techniques should be avoided, at least
in our use case.
Further discoveries are the superior performance for the

Maxwell architecture, when the last work unit is processed
separately, and for both architectures, when using float in-
stead of integer values to compute the distance, even though
this requires additional conversions with a _half2float() call.
The remaining aspects seem to have only a minor or no im-
pact at all.
In contrast to the plot of the GTX Titan, it is striking

how similar the measurement charts of the GTX 980 and
the GTX 980Ti appear even though they represent differ-
ent performance ranges. Although noticeable, it is not very
surprising, since both GTX 980 and 980Ti share the same
architecture.

Code Evaluation. Our preliminary objective was a gen-
eral implementation of the accumulation loop of our depth
of field algorithm [19]. At first we extended the initial con-
cept with simple features, followed by a few iterations of
including and testing newly emerging variation possibilities
leading to an implementation that provides 320 versions of
our algorithm.
Extending, debugging, and maintaining has been done

with ease, since, per variant only one location of the pro-
gram code has to be considered and modifications affect
generated instances of features globally. This behaviour is
an additional benefit in itself, precisely because we now can
guarantee that each specific instance of the generated fea-
ture aspect is identical, in contrast to manually copied and
modified code. With this assurance we do not risk to draw
the wrong conclusion comparing unequal or faulty code in-
stances and are able to keep many variations, which, as the
comparison across the architecture generations shows, can
be beneficial in the long run.
The final C-Mera code consists of 300 lines (275 with-

out comments) of feature implementations and expands into
over 19000 lines (16000 without comments) of CUDA code
that provides 320 distinct kernels.

7. CONCLUSION
In this paper, we showed how we were able to discard re-
dundant instances of essentially similar code fragments by
merging them into general structures. Instead of implement-
ing the whole algorithm for each of its possible variants, the
algorithm is implemented only once and every ambiguity is
replaced with its respective feature.
This approach enabled us to simply unfold, examine, and

maintain 320 different versions of the same algorithm to
eventually determine the best fitting feature-set in terms
of performance for specific GPUs and architectures.
By fully expanding every possible combination we were

able to analyze and maintain a much broader range of mea-
surements and identify unexpected findings. In addition, we
can securely rely on the accuracy of each kernel, since the
expansion of individual feature is globally consistent and in-
vestigation on the output code can be done with ease.
In conclusion it can be said that employing a feature

oriented programming methodology can proof quite useful
when it comes to exploring and analyzing a vast amount of
possibly suitable variants, especially when interesting future
variations are to be expected.

Accumulation Order

Node Type

Distance Type

Alpha Fetching

Early Out

Load Type

Peel

Local Register

Read Only Cache

98
0t
i

98
0

T
it
an

3.
8
-
7.
8
m
s

5.
4
-
11

m
s

7.
6
-
16

m
s

Acc. Order:
Node Type:

Distance Type:
Alpha Fetching:

Early Out:
Load Type:
Peel Loop:

Local Register:
Read Only Cache:

F
32 Bit Color

Compute

Block

Yes

Front to Back

Integer

Without

No

No

B
16 Bit Color

Load

Warp

No

Back to Front

Float

per Chunk

Yes

Yes

per Iteration

Figure 9: Individual measurements of various feature combinations on 3 GPUs.

Acknowledgments
The authors gratefully acknowledge the generous funding by
the German Research Foundation (GRK 1773).

8. REFERENCES
[1] S. Apel and C. Kästner. An Overview of

Feature-Oriented Software Development, July/August
2009. Refereed Column.

[2] S. Apel and C. Kästner. Virtual Separation of
Concerns - A Second Chance for Preprocessors.
Journal of Object Technology, 8(6):59–78, 2009.

[3] C. Calcagno, W. Taha, L. Huang, and X. Leroy.
Implementing multi-stage languages using asts,
gensym, and reflection. In Proceedings of the 2Nd
International Conference on Generative Programming
and Component Engineering, GPCE ’03, pages 57–76,
New York, NY, USA, 2003. Springer-Verlag New
York, Inc.

[4] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications.
Addison-Wesley, May 2000.

[5] J. Demers. Depth of field: A survey of techniques. In
R. Fernando, editor, GPU Gems. Pearson Higher
Education, 2004.

[6] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and
J. Vitek. Terra: A multi-stage language for
high-performance computing. In Proceedings of the

34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13,
pages 105–116, New York, NY, USA, 2013. ACM.

[7] A. Fredriksson. Amplifying C. http://voodoo-
slide.blogspot.de/2010/01/amplifying-c.html,
2010.

[8] K. O. W. Group. The OpenCL Specification, March
2016.

[9] T. Harada, J. McKee, and J. C. Yang. Forward+:
Bringing deferred lighting to the next level. In
Eurographics 2012 - Short Papers Proceedings,
Cagliari, Italy, May 13-18, 2012, pages 5–8, 2012.

[10] S. E. Keene. Object-oriented programming in
COMMON LISP - a programmer’s guide to CLOS.
Addison-Wesley, 1989.

[11] J. Kessenich, D. Baldwin, and R. Randi. The OpenGL
Shading Language, January 2014.

[12] J. Krivanek, J. Zara, and K. Bouatouch. Fast depth of
field rendering with surface splatting. In Computer
Graphics International, 2003. Proceedings, pages
196–201. IEEE, 2003.

[13] M. McCool, S. Du, T. Tiberiu, P. Bryan, and C. K.
Moule. Shader algebra. ACM Transactions on
Graphics, pages 787–795, 2004.

[14] R. Membarth, P. Slusallek, M. Köster, R. Leißa, and
S. Hack. High-performance domain-specific languages
for gpu computing. GPU Technology Conference

(GTC), March 2014.
[15] NVIDIA Corporation. NVIDIA CUDA C

Programming Guide, September 2015.
[16] M. Potmesil and I. Chakravarty. A lens and aperture

camera model for synthetic image generation. In
Proceedings SIGGRAPH 1981, pages 297–305. ACM,
1981.

[17] C. Prehofer. Feature-oriented programming: A fresh
look at objects. In M. Aksit and S. Matsuoka, editors,
Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP ’97), Lecture
Notes in Computer Science, pages 419–443.
Springer-Verlag, June 1997.

[18] G. Riguer, N. Tatarchuk, and J. R. Isidoro. Real-time
depth of field simulation. In W. Engel, editor,
ShaderX2: Shader Programming Tips and Tricks with
DirectX 9.0. Wordware, Plano, Texas, 2003.

[19] K. Selgrad, L. Franke, and M. Stamminger. Tiled
Depth of Field Splatting. In J. Jorge and M. Lin,
editors, Eurographics 2016 – Posters. The
Eurographics Association, 2016.

[20] K. Selgrad, A. Lier, J. Dörntlein, O. Reiche, and
M. Stamminger. A High-Performance Image
Processing DSL for Heterogeneous Architectures. In
Proceedings of ELS 2016 9rd European Lisp
Symposium, pages to–appear, New York, NY, USA,
2016. ACM.

[21] K. Selgrad, A. Lier, F. Köferl, M. Stamminger, and
D. Lohmann. Lightweight, generative variant
exploration for high-performance graphics
applications. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2015,
pages 141–150, New York, NY, USA, 2015. ACM.

[22] K. Selgrad, A. Lier, M. Wittmann, D. Lohmann, and
M. Stamminger. Defmacro for C: Lightweight, ad hoc
code generation. In Proceedings of ELS 2014 7rd
European Lisp Symposium, pages 80–87, 2014.

[23] P. Slusallek and I. Georgiev. Rtfact: Generic concepts
for flexible and high performance ray tracing. In R. J.
Trew, editor, Proceedings of the IEEE / EG
Symposium on Interactive Ray Tracing 2008, pages
115–122, RT08 Reception Warehouse Grill 4499
Admiralty Way Marina del Rey, CA 90292, 2008.
IEEE Computer Society, Eurographics Association,
IEEE.

[24] W. Taha. A gentle introduction to multi-stage
programming. In Domain-specific Program
Generation, LNCS, pages 30–50. Springer-Verlag,
2004.

[25] G. Thomas. Compute-Base GPU Particle Systems,
2014. GDC’14.

[26] T. Veldhuizen. Template metaprograms. C++ Report,
May 1995.

APPENDIX

1 // This is DOF accumulation with the following features:
2 // - block-load-with-syncthreads
3 // - peel-odd-blocks
4 // - node-rgb16-c32-xy16
5 // - copy-current-entry-to-register
6 // - synced-blockwise-early-out
7 // - directly-load-from-global-memory
8 // - load-alpha
9 // - front-to-back

10 // - float-dist
11
12 __global__ void kernel_213(int width, int height, int2 tileWH, int2 tilesizes, dataSpl

**lists, float max_coc, uint *atomic_counters, ushort4 **hdr_output)
13 {
14 int2 gid = make_int2((blockIdx.x * blockDim.x) + threadIdx.x, (blockIdx.y *

blockDim.y) + threadIdx.y);
15 if ((gid.x >= width) || (gid.y >= height))
16 return;
17 float2 gidF = make_float2(float(gid.x), float(gid.y));
18 int tile_index = (gid.x / tileWH.x) + (tilesizes.x * (gid.y / tileWH.y));
19 int num_per_tile = (tileWH.x * tileWH.y) + ((int)atomic_counters[tile_index]);
20 float4 color = make_float4(0, 0, 0, 1);
21 int tid = (threadIdx.y * 16) + threadIdx.x;
22 __shared__ dataSpl local_data[256];
23 float alpha_dest = 1.0f;
24 const int elems_per_iter = 256;
25 int iterations = num_per_tile / 256;
26 int last_iter_width = num_per_tile % 256;
27 for(int i = 0; i < iterations; ++i){
28 local_data[tid] = lists[tile_index][(i * 256) + tid];
29 __syncthreads();
30 if (__any(alpha_dest > 0.01f)) {
31 for(int j = 0; j < elems_per_iter; j += 1){
32 dataSpl elem = local_data[j];
33 float dist_x = __half2float(elem.x()) - gidF.x;
34 float dist_y = __half2float(elem.y()) - gidF.y;
35 float coc_sq = elem.sq_coc();
36 if (((dist_x * dist_x) + (dist_y * dist_y)) <= coc_sq) {
37 float alpha = __half2float(elem.w());
38 color.x += (alpha_dest * alpha *

__half2float(elem.r()));
39 color.y += (alpha_dest * alpha *

__half2float(elem.g()));
40 color.z += (alpha_dest * alpha *

__half2float(elem.b()));
41 alpha_dest = (1.0f - alpha) * alpha_dest;
42 }
43 }
44 }
45 else
46 break;
47 __syncthreads();
48 }
49 local_data[tid] = lists[tile_index][(iterations * 256) + tid];
50 __syncthreads();
51 if (alpha_dest > 0.01f)
52 for(int j = 0; j < last_iter_width; j += 1){
53 dataSpl elem = local_data[j];
54 float dist_x = __half2float(elem.x()) - gidF.x;
55 float dist_y = __half2float(elem.y()) - gidF.y;
56 float coc_sq = elem.sq_coc();
57 if (((dist_x * dist_x) + (dist_y * dist_y)) <= coc_sq) {
58 float alpha = __half2float(elem.w());
59 color.x += (alpha_dest * alpha *

__half2float(elem.r()));
60 color.y += (alpha_dest * alpha *

__half2float(elem.g()));
61 color.z += (alpha_dest * alpha *

__half2float(elem.b()));
62 alpha_dest = (1.0f - alpha) * alpha_dest;
63 }
64 }
65 __syncthreads();
66 hdr_output[gid.x][gid.y] = make_half4(color.x / (1.0f - alpha_dest), color.y /

(1.0f - alpha_dest), color.z / (1.0f - alpha_dest), 1.0f);
67 }

Figure 10: C-Mera generated kernel with the best
performance on Nvidia GTX 980Ti.

