
Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2016)
E. Eisemann and E. Fiume (Editors)

Fast Shadow Map Rendering for Many-Lights Settings

K. Selgrad, J. Müller, C. Reintges, M. Stamminger

Computer Graphics Group, University of Erlangen-Nuremberg, Germany

Figure 1: With our culling approach, shadow map based visibility tests for many-lights rendering can be sped up considerably for a wide
range of shadow map resolutions. The left image, DOOR, shows the upper level of the Sponza scene illuminated by VPLs distributed from
a light source inside the wine cellar. Note the indirect shadow of the door and the shadows behind the column in the corner. In the center
image, GRILLE, a fine structure casts indirect soft shadows from light reflected by the opposite wall. The right image, VILLAGE, shows diffuse
lights cast from the windows in a village. Rendering time in comparison to light and camera frustum culling is reduced to, from left to right,
47%, 87% and 74% when using 512×512 parabolic shadow maps, and to 26%, 74% and 46% when using cube maps of the same resolution
(per-face).

Abstract
In this paper we present a method to efficiently cull large parts of a scene prior to shadow map computations for many-lights
settings. Our method is agnostic to how the light sources are generated and thus works with any method of light distribution.
Our approach is based on previous work in culling for ray traversal to speed up area light sampling. Applied to shadow mapping
our method works for high- and low-resolution shadow maps and, in contrast to previous work on many-lights rendering, does
neither entail scene approximations nor imposes limits on light range, while still providing significant gains in performance.
In contrast to standard culling methods shadow map rendering itself is sped up by a factor of 1.5 to 8.6 while the speedup of
shadow map rendering, lookup and shading together ranges from 1.1 to 4.2.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Picture/Image Generation—Color,
shading, shadowing, and texture I.3.7 [Computer Graphics]: Picture/Image Generation—Visible line/surface algorithms

1. Introduction

Rendering scenes with hundreds of light sources allows smooth
and detailed shading, producing much more pleasant and plausi-
ble results when compared to only using a small number of light
sources. A larger number of light sources can be applied to pro-
vide particle lighting [OA11, HMY12], to support many manually
placed lights (e.g. to set a certain mood or be placed on a map),
or to distribute them via physically based light tracing [Kel97].
Until recently, only limited, local shading has been possible for
shading many lights at interactive rates. Shadows were not in-
cluded [DWS∗88, OA11, DS06], or only computed from very ap-
proximate structures [RGK∗08, HREB11].

We propose to tackle the challenge of shading many lights with
shadows by efficiently culling large, non-convex parts of the scene
prior to shadow map computation. Olsson et al. [OBS∗15] propose
a method that also relies on culling and achieve very good results
for limited light sizes. Our method is not as fast, however, we re-
move the restriction of having only lights with a small radius of in-
fluence. Even though we lift this restriction our scheme still benefits
from small lights and we believe that our approach might combine
well with Olsson et al.’s work.

Contribution. We show how voxel-based culling can be used to
remove large parts of the scene during shadow map rendering. Our
method works over a wide range of shadow map resolutions and

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

clearly outperforms standard approaches. Our method is not ap-
proximate (aside from using shadow maps) and thus produces accu-
rate results such as shadows from fine geometry that are not avail-
able in undersampled scene representations.

The remainder of this paper is structured as follows: In Section 2
we provide a short overview of general shadowing techniques and
list more recent advances in computing shadows for many-lights
settings. In Section 3 we review the non-convex voxel-based culling
that our work builds upon, and in Section 4 we give a detailed de-
scription of how we apply this culling scheme to reduce the cost
of computing shadows for many lights. We present our results in
Section 5 and conclude with Section 6.

2. Related Work

Shadows are one of the major features that facilitate understanding
of rendered 3D scenes, and in accordance with their fundamental
importance there is a vast body of research on accurate and effi-
cient rendering of shadows with varying feature sets. For interac-
tive settings shadow volumes [Cro77] and even more so, shadow
maps [Wil78], are the standard methods. With ever increasing ray
traversal performance [ALK12,Gut14] and fast hierarchy construc-
tion [LGS∗09, PL10, Kar12] ray tracing is becoming an interest-
ing option for interactive settings [Sto15], especially when taking
multiple samples [SMS15]. Recent alternatives to these established
methods provide very high performance for compressed, precom-
puted shadows via voxel-representations [SKOA14, KSA15] and
shadow map-based multi-resolution hierarchies [SBE16].

Apart from (point light) hard shadows there is also an enormous
body of research on rendering soft shadows, that is shadows from
light sources with spatial extent. The traditional solutions to this
problem are simple accumulation of multiple samples via an accu-
mulation buffer [HA90] or distributed ray tracing [CPC84]. There
has been much work on soft shadowing methods based on shadow
maps for which we refer to two recent books [ESAW11, WP12].

The use of many lights helps to create more interesting scenes
with moody lighting, many separately moving light sources (e.g.
rows of torches, particles) or to integrate the results of global il-
lumination methods [Kel97, DKH∗14]. Disregarding shadowing,
shading with many lights can be computed in forward-rendering
using tiled shading [OA11, OBA12] or when using deferred shad-
ing [DWS∗88, ST90] via splatting [DS06, ML09, NW09]. How-
ever, especially for light sources not carefully placed by hand,
such as when using global illumination methods in interactive
contexts, this can lead to serious artefacts such as light bleed-
ing [DS06, ML09, NW09]. To this end Laine et al. [LSK∗07]
present a method to cache a limited number of shadow maps and
only incrementally rebuild them according to a predetermined bud-
get. Ritschel et al. [RGK∗08] propose to instead reduce the resolu-
tion of both the shadow maps as well as the scene representation by
extremely downsampling both. Holländer et al. [HREB11] present
a method to compute a level of detail structure for more efficient
shadows in many-lights settings. In contrast to these approxima-
tions, Harada et al. [HMY12] compute shadows from many lights
via ray tracing. To this end they use lights with limited radius of in-
fluence and apply culling in a tiled shading [OA11] fashion. More

recently, Olsson et al. [OBS∗15] presented a method for evaluating
shadows of many lights with limited radius of influence. They fur-
ther exploit virtual shadow maps and determine the resolution of
each light’s shadow map dynamically.

3. Voxel-based pre-BVH Culling for Casting Shadow Rays

Our work is based on a recent method to improve BVH construc-
tion and ray traversal performance when casting shadow rays to
area light sources [SMS15]. We will shortly review this pre-BVH
culling scheme as it will be our acceleration structure for shadow
map creation.

The basic idea of pre-BVH culling is to use a coarse grid as a
fast and lightweight classification structure. The input primitives
of the scene are then spatially classified and assigned to the cells
they overlap. Based on this mapping from grid cells to overlapping
geometry, a simple process to select the part of the scene relevant
for casting shadow rays to an area light is as follows: The grid is
seeded with the cells visible to the observer tagged as ‘source’ cells,
and the cells overlapping the light source as ‘target’ cells. With
this setup a conservative 3D line is rasterized [AW87] from each
source to each destination cell and all encountered cells are tagged
as ‘relevant’ (naturally, only non-empty cells are tagged). Finally,
the BVH is built using only geometry from those cells.

The major limitation of this approach is that a separate BVH for
tracing shadow rays has to be constructed. Even though the BVH
can be constructed much faster on the culled data, the gains for ray
traversal are not equally strong (due to its logarithmic complexity).
Therefore, pre-BVH culling only pays off in a certain band where
enough shadow samples are taken to amortize the construction of
the culled BVH and the cost for computing a very high quality BVH
does not.

4. Voxel-based Culling for Many-Lights Rendering

In this section we describe how we apply the culling scheme re-
viewed in Section 3 to compute shadow maps for many-lights ren-
dering. Figure 2 illustrates our culling process for sampling a sin-
gle light source and Figure 3 outlines the algorithm itself: From
the scene representation used for rendering we compute for each
triangle which cells it overlaps and register it with all these cells.
This structure is not view-dependent as it encompasses the entire
scene. We compute the visible part of the scene in a (full resolution
deferred or early-z) pass and find the voxels that the sampled posi-
tions map to. These are tagged as start voxels and used throughout
the entire frame. We then iterate over all lights and for each light
mark the voxel containing it as destination voxel. We traverse a con-
servative 3D line from each source voxel to this destination voxel,
thereby tagging all encountered voxels as relevant for shadow map
construction as they contain potential occluder geometry. In con-
trast to Selgrad et al. [SMS15] there is always a single destination
voxel as (interactive) many-lights rendering is commonly based on
point lights, yielding an increased culling ratio. The result of this
culling is a much reduced subset of the scene which is then used to
render to a shadow map for that light. This process is then repeated
for each light source and the shading accumulated appropriately.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

Figure 2: Stages of culling for a single light, illustrated by a top-down view of a SPONZA-like scene with columns and curtains. Left: The
camera frustum (gray) looks at the curtain and a small part of the scene behind it is visible (smaller, dotted frustum). Geometry relevant
for shadows of the single point light will be determined. Center: The voxels containing visible geometry (blue) and the light (orange) are
tagged. Right: The (non-empty) cells between the starting voxels and the light voxel are tagged (right); empty voxels encountered during line
traversal are indicated with blue borders, only. Furthermore note the non-convex shape resulting from line traversal (dotted gray outline).

Scene Data Grid

Visible Set Starting Voxels

One Light Destination Voxel

Relevant Scene Part

Shadowmap

Output

Per Light

Figure 3: Stages of our algorithm for fast shadows from many
lights. Starting from scene data, the visible set is computed by ren-
dering and starting voxels are tagged. For each light the voxel it
contains is marked, and all starting voxels are connected with this
voxel, tagging encountered cells as relevant during this process.
Based on the thusly selected subset of the scene we generate the
shadow map and accumulate shading in the final output buffer. The
nodes in the shaded region are iterated for each light (cluster), col-
ored edges map to the performance breakdown shown in Figure 5.

Figure 2 shows this evaluation for one light source from two differ-
ent camera positions and shows tagged and traversed voxels with
the resulting geometry used for shadow computation. Note how the
start voxels in the second row are scattered through the scene and
the voxels traversed form a non-convex region of the scene. In the
following we describe key aspects of our implementation of culling
for many-lights rendering.

Culling for Many Lights vs Frustum Culling. The benefit of us-
ing this voxel-based culling in a rasterization context is that the
number of primitives submitted affects the render time in a more
linear fashion. Thus, culling efficiency translates directly to more
efficient shadow map rendering, as our results in Section 5 show.
In contrast to frustum culling our method incorporates information
about the visible part of the scene, thereby also providing a form of
occlusion culling as scene parts behind larger occluders (i.e. span-
ning an entire voxel) will be omitted.

Grid Resolution and Clipping. Our grid structure is very coarse
and thus very fast to traverse and cheap to store in memory. We
evaluated different sizes (see Section 5) and, per default, use a res-
olution of 32× 32× 32. Note that the grid resolution also deter-
mines the number of batches that are submitted for rasterization
when rendering the shadow maps.

To ensure that no occluders are missed regardless of which com-

bination of cells are selected, primitives have to be inserted into all
voxels they overlap. However, this causes multiple rasterization of
the same primitives if more than one voxel containing them are se-
lected, which is especially costly for scenes containing very large
triangles (such as Sponza).

We have evaluated two options to prevent this scenario: Clip-
ping the geometry to each cell’s extend and inserting the result-
ing triangles into the voxel’s primitive list, or simple duplication
where excessively large triangles are inserted into a separate list
that is exempt from culling. With the latter method we sort trian-
gles to this no-cull list as soon as they overlap more than two vox-
els. Note, however, that for faster rendering via parabolic shadow
maps [BAS02] clipping triangles may be unavoidable to prevent
rendering artifacts.

Clustering. As we employ conservative line rasterization to mark
relevant voxels, mutual voxel-to-voxel visibility produces consis-
tent results, regardless of the actual light or geometry positions in-
volved. It follows that for lights falling into the same voxel, culling
should only occur once, and not be repeated for each of these lights.
As culling itself is a very fast process this is, however, only a minor
optimization, see Section 5.

An interesting direction for future work would be to cluster lights
more aggressively, for example by no longer restricting the culling
process to n : 1, but to allow n : m line traversals for m nearby light
voxels. Culling efficiency will then drop with increasing m (by the
spatial extend of the voxel cluster), however, more shadow maps
could be rendered on the same data. Since culling is very fast it is
not clear if the resulting performance loss from being overly con-
servative per-light will outweigh the reduced culling overhead.

Warp-parallel DDA. In previous work line rasterization is imple-
mented by a simple DDA kernel that traverses the grid by itera-
tive stepping, tagging the current voxel in each iteration. To ensure

conservative culling Selgrad et al. [SMS15] also tag
the one-ring around each voxel. This ensures that
occluders between positions on the edges of voxels
are also incorporated properly (as illustrated in the
inset image showing the right part of the SPONZA-
like scene). We improved this step twofold. We note

that, as only a small subset of all voxels will be visible, there is
only a limited number of starting voxels and thus the GPU will be
underutilized during DDA traversal.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

Figure 4: Further test scenes that we use to evaluate the performance of our method: ROOM (left), FLAG (center) and CELLAR (right). In
comparison to frustum culling render time is reduced to (f.l.t.r.) 47%, 75% and 43% for 512×512 parabolic shadow maps, and to 29%, 68%
and 23% for cube shadow maps of the same resolution (per-face).

We improve GPU utilization by employing a warp-parallel ver-
sion of the line traversal. To this end we first select the longest axis
of traversal and assign each step along this direction to a separate
thread of the same warp. The entire line is then traversed in parallel
where each thread only takes care of a slice orthogonal to the ma-
jor traversal axis. This way we prevent tagging the one-ring around
starting and end positions, which is clearly overly conservative,
without introducing unnecessary checks in the inner traversal loop.
Furthermore, checking if adjacent voxels should be tagged as well
is also simplified. Note that this scheme maps particularly well to
our default grid dimension described above. In our test scenes this
optimization reduced the culling overhead by close to 50%, more
importantly however, the number of triangles left after culling is
reduced by 20%, resulting in a decrease in rendering time of 10%
(see Section 5).

Parabolic vs Cube Maps and Tiling. Our evaluation shows re-
sults for both standard cube maps [Gre86] and parabolic shadow
maps [BAS02]. In contrast to frustum culling, our approach is ag-
nostic as to which shadow map projection is used.

Similarly to the encoding of imperfect shadow maps [RGK∗08],
the shadow maps computed by our method can also be evaluated in
batches. To this end (when using parabolic maps) we store a num-
ber of (separately rendered) shadow maps in a tiled fashion, even
when using higher resolution shadow maps. In our experiments we
found that a 4×4 tiling works best during shadow map lookup over
a wide range of resolutions. We have not looked into using virtual
textures and adaptive shadow map resolution [OBS∗15], but are
confident that these approaches can be used to further increase the
utility of our approach.

5. Results

In this section we compare rendering times of our method to using
no culling at all and to dual (light and camera) frustum culling, for
cube and paraboloid shadow maps from virtual point lights (note
that light frustum culling is not very effective for paraboloid pro-
jections). We analyze our algorithm for the following test scenes:

DOOR The upper level of Sponza with light shining out of a door
and bouncing on the balustrade, generating indirect shadows (see
Figure 1, left, 190 VPLs).

GRILLE A grille in the wine cellar, light diffusely reflects off the
wall and the thin bars cast soft, indirect shadows (see Figure 1,
center, 96 VPLs).

VILLAGE A small village at night time, where the windows are il-
luminated by area lights shining directly at them, scattering light
diffusely in the scene (see Figure 1, right, 548 VPLs).

ROOM A messy room in the wine cellar, illuminated by light re-
flecting off the carpet opposite the door (see Figure 4, left, 192
VPLs).

FLAG The Sponza scene, indirectly illuminated by a light source
at the floor of the second level (see Figure 4, center, 384 VPLs).

CELLAR The wine cellar, illuminated by light from the lamp in
the anteroom. The lamp’s shadow is also generated by a num-
ber of VPLs sampled around its center (see Figure 4, right, 96
VPLs).

Figure 5 shows a breakdown of the average render time for shad-
ing a single light (note that a full tabulation of these and further
times can be found in our supplemental material). It can be seen that
using no culling at all is clearly inferior in all cases and that the ren-
dering time of our method is consistently below the time required
when using dual frustum culling. The figure shows that culling and
draw-call generation (preparing the appropriate structure for gl-
MultiDrawElementsIndirect) are negligible and that our warp-
parallel approach is in fact faster than (also parallelized) frustum
culling. This is due to the fact that, using our approach, only a sub-
set of the voxels are even considered to be checked for relevance.
Shading using the computed shadow maps is a constant offset as we
use the same procedure and in most cases generating the shadow
map is clearly more expensive.

The figure also shows the percentage of scene triangles left after
culling (orange lines). When no culling is used all triangles are sub-
mitted for rasterization (for the left bar the line is always at 100%).
This overlay illustrates that shadow map rendering performance is
linearly dependent on the number of primitives rendered.

The difference of using our method in comparison to frustum
culling is scene dependent, as Figure 5 shows. This is due to the
fact that in certain cases the culled results are similar. In these cases
(such as with GRILLE) the camera is aimed at the outer regions of
the scene for which frustum culling is as efficient as our culling.
Our culling is more efficient when there are further objects hidden
behind occluding geometry. In this common scenario the number
of voxels tagged is limited by the position of the starting voxels
and the light’s location, which can lead to large parts of the scene
not even being considered (see Figure 2). This property can be in-
terpreted as a limited form of integrated occlusion culling.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

0.2
5 ms

0.5
0 ms

0.7
5 ms

1.0
0 ms

1.2
5 ms

1.5
0 ms

1.7
5 ms

1.2
5 ms

2.5
0 ms

3.7
5 ms

5.0
0 ms

6.2
5 ms

7.5
0 ms

8.7
5 ms

10
0

%
27

%
20

%

grille

10
0

%
62

%
25

%

room

10
0

%
40

%
16

%

door

10
0

%
54

%
38

%

flag

10
0

%
53

%
38

%

village

10
0

%
64

%
23

%

cellar

10
0

%
18

%
12

%

grille

10
0

%
63

%
18

%
room

10
0

%
32

%
7.

8
%

door

10
0

%
52

%
35

%

flag

10
0

%
55

%
35

%

village

10
0

%
67

%
15

%

cellar

Parabolic Map Cube Map

Shade Compute SM Build Drawcall Culling

Figure 5: Average time (in ms) to compute the different steps for shadows (at 512× 512) from a single light in our test scenes. For each
scene we break down the times (from left to right) for simple rendering, rending with dual-frustum culling and with voxel culling. The left
part shows results using parabolic shadow maps, the right part shows cube map results (with 512×512 per face). Relative performance to
not using culling is noted above each bar. The orange line further shows the relative number of primitives submitted for rasterization after
culling (starting with 100% for no culling on the left bar).

The total post-processing render times illustrated in Figure 6
show that our method achieves a considerable speed-up in most
cases, even when accounting for the work common to the meth-
ods (e.g. framebuffer creation, shading per light, final composition).
The figure does not include, however, the time to map triangles to
voxels as this part of our method is, in its current form, a sequen-
tial routine executed on the CPU. Thus, the render times listed can
only be achieved for static scenes, but with dynamic lights where
shadows are computed on a per-frame basis. As described in Sec-
tion 4, our method can also be run with a simpler grid construction
process where very large primitives are kept in a separate list that
is exempt from culling. For a limited number of dynamic objects
(such as a few characters) this method can be employed to remove
that limitation. When this version is used the construction overhead
in our test scenes is between 40ms and 50ms, which, as can be seen
in Table 6 moves our method closer to frustum culling, but does not
cause or method to be slower in most cases. However, we believe
that fully dynamic clipping and mapping of the input primitives
can be implemented to be very fast and we consider this one of
the most important directions for future work. Furthermore, even
the faster, non-clipping binning approach is still a sequential CPU-
bound process and will be subjected to optimization in future work.
The difference in rendering time between those two approaches to

binning is insubstantial, suggesting that the easier way of keeping
excessive triangles separately might lead to much improved results
quickly (see tabulation in our supplemental material).

Of the smaller-scale optimizations (see Section 4) using our
warp-parallel line rasterization results in a decrease in rendering
time of 10%, and clustering yields a speed-up from 4.5% to 9%
We have evaluated our method on shadow map resolutions from
256 × 256 up to 2048 × 2048 for all our test scenes for both
parabolic and cube shadow maps (see our supplemental material)
and found that our method performs very similar to the results pre-
sented in Figures 5 and 6 when compared to frustum culling.

6. Conclusion

In this paper we have shown how we can apply voxel-based culling
to speed up shadow map rendering for many-lights settings. We
have shown that culling efficiency directly translates to rendering
efficiency and that the overhead of using our method does not ex-
ceed that of frustum culling. We have further shown that our ap-
proach is consistently faster than frustum culling that considers
both camera and light setup.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

10
0 ms

20
0 ms

30
0 ms

40
0 ms

50
0 ms

60
0 ms

70
0 ms

80
0 ms

90
0 ms10

00
ms

50
0 ms

10
00

ms15
00

ms20
00

ms25
00

ms30
00

ms35
00

ms40
00

ms45
00

ms50
00

ms

10
0

%
31

%
27

%

grille

10
0

%
64

%
30

%

room

10
0

%
41

%
21

%

door

10
0

%
56

%
42

%

flag

10
0

%
55

%
41

%

village

10
0

%
67

%
29

%

cellar

10
0

%
19

%
14

%
grille

10
0

%
64

%
19

%

room

10
0

%
33

%
8.

5
%

door

10
0

%
53

%
36

%

flag

10
0

%
56

%
36

%

village

10
0

%
68

%
16

%

cellar

Parabolic Map Cube Map

No culling Dual frustum culling Voxel culling

Figure 6: Rendering time (including shadow map generation, shadow lookups and shading) for one frame of the scenes described at the outset
of Section 5 (see also Figures 1 and 4). Note that even when incorporating common factors to produce the image, our method consistently
achieves shorter rendering times.

Future Work. Our work provides many options for future work.
The most important direction will be to provide a fast binning
approach to construct the initial grid to allow for fully dynamic,
not only partially dynamic, scenes. We believe that this will not
be an obstacle as the process should map well to highly par-
allel GPU construction. Further directions will be to evaluate if
more approximate structures can benefit from voxel-based culling.
One example would be allowing for higher quality approxima-
tions with imperfect shadow maps [RGK∗08] (sampling more
points, and culling them before rendering), or speeding up Many-
Lods [HREB11]. We would also like to investigate multi-resolution
representations of our grid to better adapt to highly sparse re-
gions. Another promising direction could be to investigate more
aggressive (and view-dependent) clustering, potentially along the
lines of lightcuts [WFA∗05]. We also believe that adapting virtual
textures and adaptive shadow map resolution from Olsson et al.’s
work [OBS∗15] will further improve our method.

Acknowledgments

The authors gratefully acknowledge the generous funding by the
German Research Foundation (GRK 1773).

References

[ALK12] AILA T., LAINE S., KARRAS T.: Understanding the Efficiency
of Ray Traversal on GPUs – Kepler and Fermi Addendum. NVIDIA
Technical Report NVR-2012-02, NVIDIA Corporation, June 2012. 2

[AW87] AMANATIDES J., WOO A.: A Fast Voxel Traversal Algorithm
for Ray Tracing. In In Eurographics ’87 (1987), pp. 3–10. 2

[BAS02] BRABEC S., ANNEN T., SEIDEL H.-P.: Shadow Mapping for
Hemispherical and Omnidirectional Light Sources. In In Proc. of Com-
puter Graphics International (2002), pp. 397–408. 3, 4

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray
tracing. In Proceedings SIGGRAPH ’84 (1984), ACM, pp. 137–145. 2

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. Com-
puter Graphics (Proc. of SIGGRAPH) 11, 2 (1977), 242–248. 2

[DKH∗14] DACHSBACHER C., KŘIVÁNEK J., HAŠAN M., ARBREE A.,
WALTER B., NOVÁK J.: Scalable Realistic Rendering with Many-Light
Methods. Computer Graphics Forum 33, 1 (2014), 88–104. 2

[DS06] DACHSBACHER C., STAMMINGER M.: Splatting indirect illumi-
nation. In I3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games (New York, NY, USA, 2006), ACM, pp. 93–100.
1, 2

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B., DUFFY C.,
HUNT N.: The Triangle Processor and Normal Vector Shader: A VLSI
System for High Performance Graphics. In Proceedings of the 15th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1988), SIGGRAPH ’88, ACM, pp. 21–30. 1, 2

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER
M.: Real-Time Shadows. A.K. Peters, 2011. 2

[Gre86] GREENE N.: Environment mapping and other applications of

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



K. Selgrad, J. Müller, C. Reintges & M. Stamminger / Fast Shadow Map Rendering for Many-Lights Settings

world projections. IEEE Comput. Graph. Appl. 6, 11 (Nov. 1986), 21–
29. 4

[Gut14] GUTHE M.: Latency Considerations of Depth-first GPU Ray
Tracing. In Eurographics 2014 - Short Papers (2014), Galin E., Wand
M., (Eds.), The Eurographics Association. 2

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer: hardware
support for high-quality rendering. In Proceedings SIGGRAPH 1990
(1990), ACM, pp. 309–318. 2

[HMY12] HARADA T., MCKEE J., YANG J. C.: Forward+: Bringing
Deferred Lighting to the Next Level. In Eurographics 2012 - Short Pa-
pers Proceedings, Cagliari, Italy, May 13-18, 2012 (2012), pp. 5–8. 1,
2

[HREB11] HOLLÄNDER M., RITSCHEL T., EISEMANN E.,
BOUBEKEUR T.: ManyLoDs: Parallel Many-View Level-of-Detail
Selection for Real-Time Global Illumination. Computer Graphics
Forum (Proc. EGSR 2011) (2011). 1, 2, 6

[Kar12] KARRAS T.: Maximizing parallelism in the construction of bvhs,
octrees, and k-d trees. In Proceedings of the EUROGRAPHICS Confer-
ence on High Performance Graphics 2012, Paris, France, June 25-27,
2012 (2012), pp. 33–37. 2

[Kel97] KELLER A.: Instant Radiosity. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-
Wesley Publishing Co., pp. 49–56. 1, 2

[KSA15] KÄMPE V., SINTORN E., ASSARSSON U.: Fast, Memory-
Efficient Construction of Voxelized Shadows. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (2015),
ACM. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S., LUEBKE
D., MANOCHA D.: Fast BVH Construction on GPUs. Computer Graph-
ics Forum (2009). 2

[LSK∗07] LAINE S., SARANSAARI H., KONTKANEN J., LEHTINEN J.,
AILA T.: Incremental Instant Radiosity for Real-Time Indirect Illumi-
nation. In Proceedings of Eurographics Symposium on Rendering 2007
(2007), Eurographics Association, pp. 277–286. 2

[ML09] MCGUIRE M., LUEBKE D.: Hardware-accelerated global illu-
mination by image space photon mapping. In HPG ’09: Proceedings
of the Conference on High Performance Graphics 2009 (New York, NY,
USA, 2009), ACM, pp. 77–89. 2

[NW09] NICHOLS G., WYMAN C.: Multiresolution Splatting for Indi-
rect Illumination. In Proceedings of the 2009 Symposium on Interactive
3D Graphics and Games (New York, NY, USA, 2009), I3D ’09, ACM,
pp. 83–90. 2

[OA11] OLSSON O., ASSARSSON U.: Tiled Shading. Journal of Graph-
ics, GPU, and Game Tools 15, 4 (2011), 235–251. 1, 2

[OBA12] OLSSON O., BILLETER M., ASSARSSON U.: Tiled and Clus-
tered Forward Shading. In SIGGRAPH ’12: ACM SIGGRAPH 2012
Talks (New York, NY, USA, 2012), ACM. 2

[OBS∗15] OLSSON O., BILLETER M., SINTORN E., KÄMPE V., AS-
SARSSON U.: More Efficient Virtual Shadow Maps for Many Lights.
Visualization and Computer Graphics, IEEE Transactions on 21, 6 (June
2015), 701–713. 1, 2, 4, 6

[PL10] PANTALEONI J., LUEBKE D.: HLBVH: Hierarchical LBVH
Construction for Real-time Ray Tracing of Dynamic Geometry. In Pro-
ceedings of the Conference on High Performance Graphics (Aire-la-
Ville, Switzerland, Switzerland, 2010), HPG ’10, Eurographics Associ-
ation, pp. 87–95. 2

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-P.,
DACHSBACHER C., KAUTZ J.: Imperfect Shadow Maps for Efficient
Computation of Indirect Illumination. ACM Trans. Graph. 27, 5 (Dec.
2008), 129:1–129:8. 1, 2, 4, 6

[SBE16] SCANDOLO L., BAUSZAT P., EISEMANN E.: Compressed
Multiresolution Hierarchies for High-Quality Precomputed Shadows.
Computer Graphics Forum (Proc. Eurographics) 35, 2 (May 2016). 2

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.:
Compact Precomputed Voxelized Shadows. ACM Transactions on
Graphics 33, 4 (2014). 2

[SMS15] SELGRAD K., MÜLLER J., STAMMINGER M.: Faster Ray-
Traced Shadows for Hybrid Rendering of Fully Dynamic Scenes by Pre-
BVH Culling. In Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference (2015), Giachetti A., Biasotti S., Tarini M.,
(Eds.), The Eurographics Association. 2, 3

[ST90] SAITO T., TAKAHASHI T.: Comprehensible Rendering of 3-D
Shapes. In Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1990), SIG-
GRAPH ’90, ACM, pp. 197–206. 2

[Sto15] STORY J.: Hybrid Ray-Traced Shadows, 2015. GDC’15. 2

[WFA∗05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: A scalable approach
to illumination. ACM Trans. Graph. 24, 3 (July 2005), 1098–1107. 6

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces.
Computer Graphics (Proc. of SIGGRAPH) 12, 3 (1978), 270–274. 2

[WP12] WOO A., POULIN P.: Shadow Algorithms Data Miner. A K
Peter/CRC Press, 2012. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.


