
Real-time Depth of Field using Multi-Layer Filtering

Kai Selgrad∗ Christian Reintges∗ Dominik Penk∗ Pascal Wagner∗ Marc Stamminger∗

Computer Graphics Group, University of Erlangen-Nuremberg

Figure 1: Our novel approach to rendering depth of field in real-time provides pleasant and plausible results (left), also for complicated
cases where out-of-focus geometry in the near-field would occlude important scene geometry (right).

Abstract

We present a novel technique for rendering depth of field that ad-
dresses difficult overlap cases, such as close, but out-of-focus, ge-
ometry in the near-field. Such scene configurations are not managed
well by state-of-the-art post-processing approaches since essential
information is missing due to occlusion.

Our proposed algorithm renders the scene from a single camera po-
sition and computes a layered image using a single pass by con-
structing per-pixel lists. These lists can be filtered progressively to
generate differently blurred representations of the scene. We show
how this structure can be exploited to generate depth of field in
real-time, even in complicated scene constellations.

CR Categories: I.3.3 [Computer Graphics]: Image Generation

Keywords: depth of field, rendering, real-time, layers

1 Introduction

Depth of field is a visually important effect, and a frequently used
artistic element in photography and movies. It is caused by the
finite size of the lens of a camera (or of the eye) that gathers light.
The lens focuses incident light on the film (or the retina), but it does
so only for light rays originating from a certain distance, the focus
depth. Light rays emanating from before or behind this focus depth
become blurred. From the view of a pixel, its eye rays are scattered
over the entire lens, and they converge on the focus plane. Before
or behind the plane they span the so-called circle of confusion, the
world space size of which varies linearly with the distance to the

∗firstname.lastname@fau.de

focus plane. A detailed description of the effect can be found in
Riguer et al. [2003].

A simulation of depth of field requires an additional integral over
the 2D-range of the lens, which makes computation expensive.
Thus, for real-time rendering, approximate methods have been de-
veloped and integrated successfully in state-of-the-art rendering en-
gines.

Most of these approaches apply a spatially varying blur filter as
a post-process to the final high dynamic range image, just before
tone-mapping. Even if the results often look convincing, there are
cases that such approaches cannot handle correctly. An example is
shown in Figure 1 where a railing in the foreground is blurred by
depth of field, making parts of the background visible that cannot
be seen in a sharp image. The effect is evident in objects close to
the viewer, since the blur becomes particularly strong there. Any
approach based on a sharp input image cannot generate this effect,
and the results quickly appear misrepresented for these cases.

In this paper, we propose a novel approach to rendering depth of
field in real-time that addresses this effect correctly. It takes a multi-
layer image, obtained by gathering fragments in per-pixel linked
lists [Yang et al. 2010] as input. Building this data structure is com-
putationally more expensive than a simple, single-layer G-buffer,
but it contains all the information necessary for generating the ef-
fect described above properly. Note that this representation also
holds all data required to render transparent objects, and, therefore,
our method integrates transparency seamlessly.

Next, we build a mip-map-like filter pyramid on this multi-layer
image by means of a particular process that only merges fragments
of similar depth. As a result, we obtain a sequence of multi-layer
images, filtered by increasing filter sizes. In recent work [Selgrad
et al. 2014], we presented the same data structure, yet for quickly
computing soft shadows.

For final rendering, we compose the filtered layered depth images
by only using fragments with a filter size that corresponds to their
required circle of confusion. Our algorithm generates the inward-
blur effect correctly, achieving good results even for strong blur in
the foreground.

Blurring the layered depth images is computationally more expen-
sive than a simple post-processing filter, but we achieve real-time
performance even at HD resolution using a number of optimizations
that will be described in this paper.

2 Related Work

Depth of field is a result from the finite aperture of real-world op-
tical systems. Simulating depth of field requires an integral of the
light field incident to the lens over the opened range of the aperture.

In offline-rendering, this integral can be combined with the inte-
gral over the pixel’s area (anti-aliasing), over time (motion blur),
over area lights, over light frequency (spectral rendering) and oth-
ers. Since all integrals require a large number of samples per pixel
regardless, depth of field can be added almost seamlessly. Never-
theless, it is worthwhile to examine this integral further to optimize
the number of required samples (e.g. [Lehtinen et al. 2011; Belcour
et al. 2013; Lei and Hughes 2013]), to replace the point samples
with line samples [Tzeng et al. 2012], or to include even more diffi-
cult lens effects [Hullin et al. 2012]. Such approaches are, however,
still far from real-time.

In real-time, hardware-based rendering environments, integration is
more difficult. The likely oldest approach is to use the accumula-
tion buffer to average a number of renderings from slightly shifted
view points [Haeberli and Akeley 1990]. Each of these images cor-
responds to a single sample on the lens. Generating images without
ghosting requires many such render passes, and is, therefore, too
inefficient for real-time applications.

Other approaches take a pinhole image, potentially with multiple
layers, and blur the image by splatting each pixels’ contributions to
their neighbors [Krivanek et al. 2003; Lee et al. 2008; Kosloff et al.
2009]. As a result, every pixel receives a number of transparent
contributions that must be blended correctly, which requires sort-
ing. A variant is blurring using heat diffusion [Kass et al. 2006],
which is fast but mainly used for previews in movie productions
due to the limited quality.

Whereas splatting can be regarded as a scattering approach (dis-
tributing information from a pixel to its neighbors), approaches that
gather the information for a pixel of interest from their neighbor-
hood are better suited for hardware rendering. The typical approach
that is also used in many state-of-the-art rendering engines is, in-
stead, to apply a filtering procedure to a rasterized, sharp image
assuming a pinhole camera as a post-processing step. For each
(sub-)pixel the size of the circle of confusion is computed and an
image-space filter with this size applied. To avoid filtering over
silhouettes, where the filter size changes abruptly, a bilateral fil-
ter can be applied that only includes fragments of similar depth or
that excludes further fragments [Riguer et al. 2003]. The filtering
step for these approaches still requires a significant amount of time,
firstly, because filter kernels can become larger (hundreds of pix-
els), and secondly because the varying filter size makes the filter
non-separable.

Yet, with some optimizations, decent real-time results are possible.
However, none of these post-processing approaches using a single-
layer input image can properly address the effect of depth of field
that makes parts of the scene occluded in the pinhole view visible.
This effect is particularly strong for nearby-objects and can make
thin structures completely transparent.

This transparency effect can be simulated by subdividing the scene
into depth layers that are then filtered separately [Schedl and Wim-
mer 2012]. Even if the method is optimized for GPUs, no real-time
rates are reported for reasonable resolutions. A real-time method

that can also generate transparent, nearby objects is the method by
Lee et al. [2009]. In their approach, lens blur is simulated similarly
to offline-rendering by sampling the lens with a number of rays.
The method reaches real-time by rendering the scene to a number
of layers, where each layer is represented as a height field. With
this representation, it is possible to efficiently intersect nearby lens
rays with a binary search on the height fields. Yet, difficult setups
(glossy highlights, large, near-field blur) require a large number of
rays to achieve smooth results, which directly affect computation
time.

All of the above methods, as well as our approach, use a simple box,
circle, or Gaussian blur. Yet, the lens blur of real-world cameras
has a more interesting shape, called “Bokeh”. The Bokeh is the
image of a point light out of focus. It is different for all lenses and
apertures, and it usually reveals the shape of the aperture. Some
depth of field methods focus on the ability to reproduce this Bokeh
effect [McIntosh et al. 2012].

3 Algorithm Overview

Our algorithm encompasses three phases:

Collection of Scene Fragments In this step, the scene is rendered
and all fragments within a pixel are gathered in per-pixel
linked lists [Yang et al. 2010] that are recomputed on the fly
for every frame.

Filtering The previously computed fragment lists are then filtered
and merged via a filtering scheme by mip-mapping and stack-
filtering the lists similarly to Selgrad et al. [2014]. During
the filtering step (Section 5) silhouette edges, i.e. partial cov-
erage, translate to reduced opacity in the levels filtered more
strongly.

Accumulation Finally, the filtered lists are accumulated per pixel,
where from each level only those fragments are used that have
a filter size corresponding to the current circle of confusion.

In the following sections we describe these steps in detail.

4 Data Structure Generation

The base level of our multi-layer hierarchy is generated with a sin-
gle rendering pass of the scene geometry. In this pass each front-
facing fragment is shaded in the pixel shader and collected in a
fragment list of the corresponding screen pixel using the technique
by Yang et al. [2010]. The list entries encompass the fragments’
color, opacity and depth.

The per-fragment information is compactly stored in a three-
component vector using half-precision, floating point values for
color and opacity and a single precision value for depth.

To facilitate further processing of the collected data the lists are then
sorted by increasing depth values and stored compactly in the form
of consecutive arrays. This is achieved by a scanning pass [Sen-
gupta et al. 2007] applied to the list-length counters (computed dur-
ing the collection phase) before the actual sorting operation. The
sort operation can thus be implemented to directly sort into the
newly indexed arrays.

While sorting it is possible to impose an upper limit on the number
of fragments per pixel. On the base layer, we keep the closest three
or four fragments, because only in rare and particular cases (such as
scenes with many semi-transparent objects) can more fragments (on
the base layer) contribute to the final image. See Section 7 on how
this parameter affects rendering performance. Note that we col-
lect fragments regardless of their alpha values, which is in contrast

d

Lj

Lj+1

Level i

f i
j,0

f i
j+1,0

ǫ

f i
j,1

f i
j+1,1 f i

j+1,2

ǫ

Level i+ 1

d

Lj f i+1
j,0 f i+1

j,1

Figure 2: While filtering from level i to i + 1 fragments from the
source lists are merged if they are of similar depth. In the example
shown the fragments f ij,0 and f ij+1,0 are merged into f i+1

j,0 , and the
fragments f ij+1,1, f ij,1 and f ij+1,2 are merged into f i+1

j,1 .

to using per-pixel linked lists for order independent-transparency
where no fragments beyond the first opaque fragment are collected.

5 Filtering Levels

A key aspect of our method is the incremental filtering of the base
level to obtain multi-layer images with increasing filter size.

5.1 Filtering via Mip-Mapping

The most simple and efficient, albeit lower-quality, filtering method
is to downsample the fragment lists similarly to mip-mapping. This
is achieved by filtering neighboring fragment lists where we merge
the 2 × 2 lists from level i to produce a single list of level i + 1,
generating a new, filtered multi-layer image with half the resolution.

This is accomplished in a manner similar to merge sort’s combina-
tion step (which generates a single sorted list from sorted sub-lists).
At level i the fragment closest to the camera, f ij,0 from list j is se-
lected. This corresponds to the red fragment shown in Figure 2.
The fragment’s data is used to initialize the fragment f i+1

j,0 that will
be generated for the filtered level. Further fragments are accumu-
lated in f i+1

j,0 (e.g. f ij+1,0, the green fragment in Figure 2) until a
fragment farther from f ij,0 than the depth threshold ε is encoun-
tered (e.g. f ij+1,1, the blue fragment in Figure 2). At this point the
accumulated fragment is emitted, a new fragment, f i+1

j,1 , to be gen-
erated for the filtered level is initialized and accumulation proceeds
as described.

Merging close-by fragments (instead of a simple sorting step) pre-
vents the lists from becoming excessively long in higher levels.
While merging, two cases must be considered. Firstly, fragments
from the same list (e.g. f ij+1,1 and f ij+1,2, i.e. the blue and orange
fragments in Figure 2) are generally semi-transparent occluders for
the following ones. Therefore, we employ alpha blending using the
over operator, where the merged fragment’s color and opacity (c′

and α′, respectively) are computed from the fragments a and b by
α′ = 1 − (1 − αa)(1 − αb), c′ = 1

α′ (αaca + (1− αa)αbcb) .
This can be done front-to-back, i.e. in traversal order.

Secondly, fragments from different per-pixel lists are known not to
overlap; therefore, additive alpha blending is employed to compute
the color and opacity of the final fragment, based on the interme-
diate data accumulated as described above, i.e. α′1, α′2, α′3 and α′4,

Figure 3: Filtering multiple levels using the mip-mapping scheme
only exhibits strong artifacts, especially for blur in the near field
(left). The use of a filter stack preserves the fine structure while still
filtering it appropriately (right).

Level 0

Level 1

Level 2

Level 3

Figure 4: Data flow for the computation of a filter stack. A uniform
filter size is applied per level by extending the border cells where
appropriate (i.e. by clamping).

where empty sublists set α′j = 0. The combined fragment’s opac-
ity is then αmerged = 1

4
(α′1 + . . .+ α′4) and the resulting color is

given by cmerged =
α′
1c

′
1+...+α

′
4c

′
4

4αmerged
. This combination ensures that

opaque surfaces remain opaque at higher levels and, together with
the first step, yields semi-transparent fragments on silhouette edges
where not all lists contain fragments in the given range.

5.2 Filtering via Stack and Y-Map

Obviously, using a mip-mapping scheme leads to severe downsam-
pling for larger filter sizes, and thus to a reduced quality of the fil-
tered data as exemplified in Figure 3. Such artifacts are especially
noticeable when there is strong blur in the near-field, i.e. when a
very coarse filter level is applied close to the camera.

These artifacts mainly stem from the fact that we use a simple box-
filter. The use of more sophisticated filters, e.g. an À-Trous filter
kernel [Dammertz et al. 2010] or a Gaussian, is, in principle, pos-
sible. However, the larger kernel size would result in a drastic in-
crease in computation time, and as filtering time is a limiting factor
in our method (see Section 7), we opted for a combination of mip-
mapping and filter stack, as described in the following. This choice
minimizes downsampling artifacts and facilitates maintaining the
very efficient 2× 2 box-filter.

With a filter stack, too, an exponentially increasing filter size is
applied to the image, however without a reduction of the image’s
size (the image size actually increases by 1 in both dimensions,
as can be seen in the illustration of the filter pattern in Figure 4).
Figure 3 shows a comparison between mip-mapped and filter stack-
based blur using our algorithm; mip-mapping clearly exhibits the
underlying pixel structure whereas the stack filtered version is much
smoother.

Coc(d)filtersize

fs4(d)

fs3(d)
fs2(d)
fs1(d)

d in eye space

Figure 5: The circle of confusion (red) and the filter sizes repre-
sented by different levels of our hierarchy (increasing levels from
bottom to top).

The downside of using a filter stack is that, with higher levels, the
resolution does not decrease while the length of the per-pixel lists
potentially increases, leading to a much more computationally in-
tensive filter. In our approach we trade image quality for perfor-
mance with a structure called Y-map [Schwarz and Stamminger
2008] that combines mip-mapping with a filter stack. This is done
in such a manner that initially a certain number of mip-mapping
(resolution reducing) steps are performed before we switch to a fil-
ter stack. This way, the performance of the filtering as a whole can
be controlled by the number of mip-mapping steps applied, as this
reduces the amount of work while stack filtering. See Section 7 for
an analysis of this parameter.

6 Accumulation

The data structure described thus far is very general; its applicabil-
ity to soft shadows is described in Selgrad et al. [2014]. In this sec-
tion, we describe how this data structure can be used to implement a
feature-rich, real-time depth of field effect. Section 6.1 shows how
we traverse our data structure to gather fragment information and
Section 6.2 details how the targeted effect can be exploited in the
filtering step (already described for the general case in Section 5).

6.1 Traversal

Using the previously generated and filtered levels, we can now com-
pute the final output image by a composition of those. As each level
of our hierarchy holds differently filtered version of the scene, we
traverse all layers and accumulate those fragments for which the cir-
cle of confusion matches the filter size. This can be done efficiently
by traversing and accumulating fragments from sub-intervals of all
levels, guided by the circle of confusion. To avoid visible disconti-
nuities in filter size between levels, we interpolate accordingly.

The size of the circle of confusion increases with the distance to the
plane in focus as illustrated in Figure 5. A key component of our
method is the traversal of the fragment lists with filter sizes match-
ing the circle of confusion at the depth in question. Figure 5 shows
the filter sizes for a given camera configuration in eye space, in re-
lation to the circle of confusion. It can be seen that the eye space
fragment size of the levels, fsS(d), increases with distance to the
camera, whereas the size of the circle of confusion first decreases,
then increases again. This explains why we usually find particularly
strong blurring in the near-field (i.e. in front of the focus plane).

To facilitate an efficient traversal, we compute the intersections of
the circle of confusion size with the filter sizes in eye space. The
intersection in the near-field, zN , denotes the depth at which the
level representing the next finer filter size should be used, until the
next intersection. Consequently, the intersection in the far-field,
zF , determines the depth at which a filter size is no longer appro-
priate. See Figure 6 for an illustration of the level borders. Note,
however, that according to this description, the intersections of the

d in eye space

fs2(d)

fs3(d)

Coc(d)
filtersize

zN,2zN,3 zF,2 zF,3

Figure 6: Two filtered levels with entry and exit borders determined
by the circle of confusion. Level 2 is applied between zN,3 and zN,2
as well as between zF,2 and zF,3. Figure 5 shows the complete
example without level borders.

highest level can safely be disregarded as there is no level above it
to transition from or to.

The circle of confusion Coc(z) and the filter size of level S fsS(z)
can be described as

Coc(z) = F |z − zf |
fsS(z) = 2SGz

where zf is the distance to the focal plane, F a factor including the
constant camera parameters (see Demers [2004] for more details)
and G a factor describing the camera’s field of view.

Based on this the borders of level S, zN,S and zF,S , can be com-
puted by solving Coc(z) = fsS(z), yielding

zN,S =
zf

1 + (2SG)/F
,

zF,S =
zf

1− (2SG)/F
.

To simplify the traversal kernel, we compute a table linking the
border values to the level the traversal will transition into:

T = {(zN,n−1, n− 1), . . . (zN,0, 0), (zF,0, 1), . . . (zF,n−1, n)} .

This table is computed at the start of every frame and facilitates
straightforward level selection in the traversal kernel. Our traversal
is started with the most strongly filtered level n and accumulates
fragments from it until the first level border is encountered, after
which we switch to the specified level and continue with the traver-
sal accordingly.

The resulting output color is computed by using alpha blending on
the encountered fragments’ color and opacity values in the same
way as described for merging fragments in Section 5.1. Figure 7
shows the contribution of a number of levels to the final image.

6.2 Fragment List Truncation

While we generate the increasingly filtered levels of our hierarchy
we exploit a very simple observation, which, as described in Sec-
tion 7, impacts rendering performance. As can be seen in Figure 6,
there are certain intervals at each level for which no fragment in-
formation will be required during its traversal. These intervals, for
filter size 2S , are z < zN,S , zN,S−1 < z < zF,S−1 and z > zF,S ,
with the exception of the base level.

Figure 5 shows that the middle interval of a level, i.e. zN,S−1 <
z < zF,S−1, is, as described, neither used during traversal, nor re-
quired to construct the following level. Therefore, we skip this in-
terval during our incremental filtering to produce shorter lists which

Figure 7: Contribution of levels 0 through 3 (in reading order) to the final image (right).

zf d

log2(Res)

Figure 8: Resolution required to capture the circle of confusion
over a range of depth values. The red curve is zN , starting from zf
the green curve is zF . The solid gray line shows the base level res-
olution used, the dashed lines indicate progressively doubled filter
sizes.

are faster to traverse, but even more importantly (see Section 7)
speed up filtering itself.

Filtering work can be reduced further by skipping the far-field of
levels for which this interval will not be requested. Figure 8 shows
that for a certain level, determined by the camera parameters, the
fragment size catches up with the size of the circle of confusion
and the required filter size plateaus.

7 Results

The focus of our evaluation is the performance of our method in the
more complicated overlap case and to show that our algorithm runs
in real-time on standard graphics hardware.

Table 1 lists detailed times for the rendering shown in Figure 1
where the focused text is seen through the out-of-focus railing. It
can be seen that the rendering time is mostly dominated by the fil-
tering process (due to a heavy use of stack filtering), and not by the
traversal of all filtered levels. As described in Section 5.2, filter-
ing work can be reduced by computing more mip-mapping layers
before switching to a filter stack. The effect of adding a single mip-
mapping layer is shown in the second column. A visual compari-
son of the results given in the second and third column of Table 1
is shown in Figure 3. We find that the difference in rendering time
between these two is very meritable regarding the improvement in
image quality, while rendering performance is much improved with
respect to the setting of the first column. Further rendering times
for the scenes shown in Figures 7, 9 and 10 are listed in Table 2.

To evaluate the influence of the number of fragments kept in the
collection phase (see Section 4), as well as the impact of fragment
list truncation (as described in Section 6.2) we compare rendering
time for a scene with very high depth complexity (see Figure 10)
in Table 3. We note that both parameters increase overall perfor-
mance, where reducing the initial list length yields a 4.5% to 8.9%
gain in performance while fragment list truncation increases perfor-
mance by 15.3% up to 23.8%, resulting in a combined increase of
29.4%.

Regarding image quality, we compare our results to the approach by
Lee et al. [2009] when run with sufficient lens samples. A compar-
ison for the difficult overlap case is shown in Figure 11 where the

Filter configuration 1 / 3 2 / 2 4 / 0

Collect 4.14 4.14 4.14
Filter 10.19 5.38 4.26
Accumulate 5.76 5.45 4.68

Sum 20.09 14.97 13.08
Frames/sec 49.8 66.8 76.5

Table 1: Detailed times (in ms) for the scene shown in Figure 1 with
the text in focus, rendered at 720p. The filter configurations are, in
order, one step using mip-mapping, followed by three stack filter-
ing steps, two steps of both filters and lastly, using mip-mapping
only. The results for the same scene with the railing in focus are
comparable. Times were measured on a GeForce GTX 780.

Filter configuration Street Sponza Grass

Collect 6.64 6.33 11.22
Filter 13.87 8.51 11.42
Accumulate 1.81 3.21 3.36

Sum 22.32 17.46 26.00
Frames/sec 44.8 57.3 38.5

Table 2: Times (in ms) for the scenes shown in Figures 7, 9 and 10.
More detailed information on the times of the last column are pre-
sented in Table 3. Times were measured on a GeForce GTX 780 at
720p.

Figure 9: Rendering times for the Sponza scene are listed in Ta-
ble 2.

Figure 10: A scene with high depth complexity. The plants are
modeled by alpha-mapped quads, which our approach supports
seamlessly. Detailed rendering times can be found in Table 3.

Figure 11: A comparison of our approach (top, 49.8 frames/sec)
to the reference depth of field blur according to Lee et al. [2009]
(bottom, 128 samples per pixel, 15.8 frames/sec). Note how fine
structures in the front reveal the in-focus text behind.

Full Lists Truncated Lists
N = 16 N = 4 N = 16 N = 4

Collect 11.71 11.22 11.71 11.22
Filter 21.94 17.41 14.11 11.42
Accumulate 3.54 3.57 3.37 3.36

Sum 33.65 32.20 29.19 26.00
Frames/sec 29.7 31.1 34.3 38.5

Table 3: Times (in ms) comparing the impact of fragment list trun-
cation and reduction ofN , the number of fragments collected in the
first phase of our algorithm for the scene shown in Figure 10. Ren-
dering resolution was 720p using one mip-mapping step followed
by three stack filtering steps, measured on a GeForce GTX 780.

Figure 12: We compare our approach (top, 52.6 frames/sec) to
the reference depth of field blur by Lee et al. [2009] (center, 256
samples per pixel). The blurred neon text shines through the out-
of-focus railing. With too few samples per pixel, ray tracing based
methods exhibit point-sampling artifacts (bottom, 16 samples).

text shines though the railing. Figure 12 shows how a bright back-
ground shines through thin, out-of-focus objects. As can be seen,
our algorithm (top) computes images very close to the reference so-
lution (center). Note that our approach does not suffer from point-
sampling artifacts as ray tracing based methods do (e.g. [Lee et al.
2009]) as exemplified in Figure 12 (bottom). Our approach also
seamlessly integrates semi-transparent surfaces such as the glass el-
ements, which are not easily addressed by other (layered) methods.

The subtle artifact close to the blurred logo in Figure 12 is a con-
sequence of the chosen blending mode (we generally apply addi-
tive blending to avoid light leaks at grazing angles). However, in
this situation three depth layers (the railing, text area and wall) are
combined and the opacites of the first two layers are slightly over-
estimated such that the farthest layer does not contribute anymore.
In fact, blending with the over-operator removes the artifact, but
exhibits problems in other cases. The artifact can also be removed
by relaxing the ε parameter (see Section 5) so that the two farther
layers are merged during filtering.

8 Conclusion

This paper presents an efficient data structure and its application
for rendering a plausible depth of field effect in real-time, even
with complicated configurations. We showed how our method ap-
proaches ray traced results, and that it avoids errors from point-
sampling as encountered with such techniques when an insufficient
amount of samples is used. Furthermore, our method is easily scal-
able by means of a set of efficient parameters that allow quality vs
performance trade-offs.

We believe that further optimization of our method is possible, e.g.
by adding (partial) binary search to the accumulation step, as well
as by further, per-level post-processing of the generated filter levels.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
constructive and thorough feedback, and gratefully acknowledge
the generous funding by the German Research Foundation (GRK
1773).

References

BELCOUR, L., SOLER, C., SUBR, K., HOLZSCHUCH, N., AND
DURAND, F. 2013. 5d covariance tracing for efficient defocus
and motion blur. ACM Trans. Graph. 32, 3, 31:1–31:18.

DAMMERTZ, H., SEWTZ, D., HANIKA, J., AND LENSCH, H.
2010. Edge-avoiding a-trous wavelet transform for fast global il-
lumination filtering. In Proc. High Performance Graphics 2010,
67–75.

DEMERS, J. 2004. Depth of field: A survey of techniques. In GPU
Gems, R. Fernando, Ed. Pearson Higher Education.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In Proceedings
SIGGRAPH 1990, ACM, 309–318.

HULLIN, M. B., HANIKA, J., AND HEIDRICH, W. 2012. Poly-
nomial optics: A construction kit for efficient ray-tracing of lens
systems. Computer Graphics Forum 31, 4, 1375–1383.

KASS, M., LEFOHN, A., AND OWENS, J. 2006. Interactive depth
of field using simulated diffusion on a gpu. Pixar Animation
Studios Tech Report 2, 1–8.

KOSLOFF, T. J., TAO, M. W., AND BARSKY, B. A. 2009. Depth
of field postprocessing for layered scenes using constant-time
rectangle spreading. In Proceedings of Graphics Interface 2009,
Canadian Information Processing Society, 39–46.

KRIVANEK, J., ZARA, J., AND BOUATOUCH, K. 2003. Fast depth
of field rendering with surface splatting. In Computer Graphics
International, 2003. Proceedings, IEEE, 196–201.

LEE, S., KIM, G. J., AND CHOI, S. 2008. Real-time depth-of-field
rendering using point splatting on per-pixel layers. Computer
Graphics Forum 27, 7, 1955–1962.

LEE, S., EISEMANN, E., AND SEIDEL, H.-P. 2009. Depth-of-field
rendering with multiview synthesis. ACM Trans. Graph. (Proc.
of SIGGRAPH Asia) 28, 5.

LEHTINEN, J., AILA, T., CHEN, J., LAINE, S., AND DURAND,
F. 2011. Temporal light field reconstruction for rendering distri-
bution effects. ACM Trans. Graph. 30, 4, 55:1–55:12.

LEI, K., AND HUGHES, J. F. 2013. Approximate depth of field
effects using few samples per pixel. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, 119–128.

MCINTOSH, L., RIECKE, B. E., AND DIPAOLA, S. 2012. Ef-
ficiently simulating the bokeh of polygonal apertures in a post-
process depth of field shader. Comp. Graph. Forum 31, 6, 1810–
1822.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. R. 2003. Real-
time depth of field simulation. In ShaderX2: Shader Program-
ming Tips and Tricks with DirectX 9.0, W. Engel, Ed. Wordware,
Plano, Texas.

SCHEDL, D., AND WIMMER, M. 2012. A layered depth-of-field
method for solving partial occlusion. Journal of WSCG 20, 3 (6),
239–246.

SCHWARZ, M., AND STAMMINGER, M. 2008. Quality scalability
of soft shadow mapping. In Proc. Graphics Interface, 147–154.

SELGRAD, K., DACHSBACHER, C., MEYER, Q., AND STAM-
MINGER, M. 2014. Filtering multi-layer shadow maps
for accurate soft shadows. Computer Graphics Forum, doi:
10.1111/cgf.12506.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Proc. Symposium
on Graphics Hardware, 97–106.

TZENG, S., PATNEY, A., DAVIDSON, A., EBEIDA, M. S.,
MITCHELL, S. A., AND OWENS, J. D. 2012. High-quality
parallel depth-of-field using line samples. In Proceedings of the
Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics, Eurographics Association, 23–31.

YANG, J. C., HENSLEY, J., GRÜN, H., AND THIBIEROZ, N.
2010. Real-time concurrent linked list construction on the GPU.
Computer Graphics Forum (Proc. EGSR) 29, 4, 1297–1304.

