
Lightweight, Generative Variant Exploration
for High-Performance Graphics Applications

Kai Selgrad Alexander Lier Franz Köferl Marc Stamminger Daniel Lohmann
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

{kai.selgrad, alexander.lier, franz.koerferl, marc.stamminger, daniel.lohmann}@fau.de

Abstract
Rendering performance is an everlasting goal of computer
graphics and significant driver for advances in both, hardware
architecture and algorithms. Thereby, it has become possible
to apply advanced computer graphics technology even in
low-cost embedded appliances, such as car instruments. Yet,
to come up with an efficient implementation, developers
have to put enormous efforts into hardware/problem-specific
tailoring, fine-tuning, and domain exploration, which requires
profound expert knowledge. If a good solution has been found,
there is a high probability that it does not work as well with
other architectures or even the next hardware generation.

Generative DSL-based approaches could mitigate these
efforts and provide for an efficient exploration of algorithmic
variants and hardware-specific tuning ideas. However, in
vertically organized industries, such as automotive, suppliers
are reluctant to introduce these techniques as they fear loss
of control, high introduction costs, and additional constraints
imposed by the OEM with respect to software and tool-chain
certification. Moreover, suppliers do not want to share their
generic solutions with the OEM, but only concrete instances.

To this end, we propose a light-weight and incremental
approach for meta programming of graphics applications.
Our approach relies on an existing formulation of C-like
languages that is amenable to meta programming, which
we extend to become a lightweight language to combine
algorithmic features. Our method provides a concise notation
for meta programs and generates easily sharable output in
the appropriate C-style target language.
Categories and Subject Descriptors Programming Lan-
guages [Processors]: compilers, optimization, code gen-
eration; Software Engineering [Design Tools and Tech-
niques]: evolutionary prototyping; Computer Graphics
[Three-Dimensional Graphics and Realism]: Raytracing;
General Terms algorithms, experimentation, languages,
performance
Keywords exploratory programming, general purpose code
generation, prototyping, ray tracing

1. Introduction
Thanks to the rise of dedicated graphics processing units
(GPUs) and the ongoing extension of CPUs with ever more
sophisticated vector instructions (such as AVX, AltiVec,
NEON), computationally intensive graphics has become
available not only on every PC, but even on the average cell
phone. In the near future we will see an increasing application
of 3D rendering for user interaction even in cost-sensitive
embedded control systems, such as household appliances or
cars.

An example of this trend is the Virtual Cockpit of the
upcoming Audi TT model, where the complete instrument
cluster (incl. speedometer, rev counter, maps, etc.) is just
“virtual”, that is, rendered in high quality and with config-
urable skins and layouts on a dashboard-shaped display.1

A classical, yet rising problem for computer graphics engi-
neers is the constantly increasing heterogeneity of hardware
platforms: Despite existing abstractions (such as CUDA,
OpenGL, or GLSL): To deliver optimal performance, graph-
ics engineers still have to work on a rather low level, as
they need to tailor their algorithms and implementation
specifically to the problem and the employed hardware. This
goes down to the level of working around compiler issues
or revision-dependent silicon bugs. In practice, this requires
profound expert knowledge and high efforts for domain explo-
ration: Performance-sensitive parts are developed incremen-
tally by implementing and testing numerous combinations of
algorithms and implementation tricks (such as using or pro-
hibiting certain instructions) in order to find a solution that
performs well for a concrete problem/architecture combina-
tion. If such a solution has been found, it, however, commonly
does not last for long – in most cases it is not transferable
to another architecture. In this realm, recent DSL-based
approaches for graphics applications, such as HIPAcc [37] or
Halide [44] provide promising means for dealing with hard-
ware heterogeneity on a more abstract level, even though
these approaches target the intermediate developer, who
does neither want nor need full control regarding low-level
problem/architecture-specific optimizations.

However, especially in the domain of embedded control
systems (such as, automotive applications), engineers are
reluctant to employ high-level DSL approaches also because
of other nonfunctional constraints that require them to have
much more fine-grained control over the resulting code: In
most cases, these systems are developed by external suppliers
for some OEM, such as an automotive vendor, who performs
the final integration into the end product and also holds

1 http://www.audi.com/com/brand/en/vorsprung_durch_technik/
content/2014/03/audi-virtual-cockpit.html



the liability. Certifiability of software is a big issue, which
in practice leads to mandatory coding styles and defined
tool chains with old, but proven-in-use compilers. Software
components are generally delivered as source code and finally
compiled at the OEM site, so engineers on the supplier
side cannot easily integrate new DSLs and compilation
tools. Moreover, suppliers generally do not want to share a
generic DSL-based solutions with the OEM, but only the
concrete instance they get paid for, delivered as source-code
in an OEM-specified C-type language (C, C++, CUDA,
etc.). In a different context, researching new approaches and
algorithm-combinations benefits from systems that target the
domain-expert, instead of the intermediate user, by providing
abstractions while keeping full control over the generated
instructions.

About this Paper. In this setting, we advocate for C-Mera
as a transparent, light-weight, and incrementally adoptable
basis towards meta programming that provides a high level of
control over the generated source code in C-type languages.
C-Mera, which we have already presented in a previous
workshop paper [49], is a simple source-to-source compiler
that transforms a notation based on S-Expressions [34]
(sexp) for C-type languages to the native syntax of that
language, that is, for example, from sexp-C to C, and
from sexp-CUDA to CUDA. In this paper, we show how
it can be applied to come up with a light-weight and
simple, yet powerful feature composition framework for
implementation-domain exploration in performance-sensitive
computer graphics applications.

The proposed style of meta programming is transparent, as
the semantics of the sexp-based notation is identical to that
of the native language and the output is fully controllable,
including all aspects of source-code formatting, if necessary.
It is light-weight, as it requires only little tool support. It
provides incremental adoption, as the sexp-based notation
can easily be mixed with existing code in the native language.
Furthermore, it involves only little adoption risks, as it is
possible to quit and continue with the native language at
any stage of the development process. For instance, C-Mera
can be used for domain exploration of algorithmic variants
only, whereas the outcome of this exploration is then passed
as C++ or CUDA code to the next engineer for further
architecture-specific fine tuning or to the OEM.

The remainder of this paper is structured as follows: In
Section 2 we give a brief introduction into the ray-tracing
domain as one subfield of performance-critical computer
graphics to provide readers a glimpse of the vast number
of algorithmic variants and optimization approaches that
are available (and need to be explored) for a particular
application. In Section 3 we provide a brief introduction
to C-Mera. This is followed by our main contributions in
Section 4, a lightweight feature composition system, and its
application to domain exploration for ray tracing in Section 5.
We then discuss strengths and limitations of our system in
the context of competing approaches and related work in
Section 6, and conclude with Section 7.

2. Domain Analysis
One of the classic problems of computer graphics is to
compute the intersection of a ray with a three dimensional
scene, i.e. ray tracing. This has been an active area of research
for almost half a century [5, 28]. As a result of this research
there is a tremendous number of approaches to tackle this
problem, both in hard- and software.

Primitives. Optimzied algorithms most commonly work
on triangle primitives but other simple representations [21]
as well as very high level surface [7, 47] descriptions have
been and still are under active investigation. Such higher
level descriptions can also be converted to triangular data
by tesselation.

The ray tracing algorithm is usually employed to deter-
mine the part of the scene visible from the observer’s point of
view [21] as well as to compute the end-points of light paths
during the simulation of light transport [15]. However, the
algorithm can also be used, e.g., for collision detection [29].
Acceleration Structure. Even in the simple case, where
only the geometry visible to the observer is to be computed,
a large number of rays has to be traced (two million at
1080p), which does not yet include anti-aliasing. Furthermore,
any scene of interest contains a vast number of geometric
primitives (a few million are not uncommon). This geometric
complexity is managed by the use of acceleration structures
by which large parts of the scene can be rejected early.
Examples include grids [3, 30] and tree structures such as
bounding volume hierarchies [27], Octrees [20], kd-trees [25]
and bounding interval hierarchies [56].

Generation of these acceleration structures is, too, an ac-
tive topic of research, with different goals, e.g. producing hi-
erarchies of very high quality [25, 33, 53], faster construction
of quality hierarchies [57], construction of inferior hierarchies,
but at interactive rates [26, 31], and finding data layouts
that match hardware models [2, 13, 17], and preprocessing
of the data to be stored [16].
Ray Traversal. A large part of the complexity is in the
traversal of the respective structures, e.g. approaches tailored
to exploit graphics hardware [1, 23] and modern CPU
architectures [6, 13, 17, 61]. Traversal of hierarchies can also
be implemented in a stack-less fashion [24, 42] and rays can be
grouped into ray packets [23, 59], or not [60], both resulting
in different trade-offs. Custom ray tracing hardware is also
proposed [46, 48], including embedded solutions [32, 40].
Feature Set. Furthermore, if the application allows to re-
strict the set of features that have to be supported (po-
tentially with different variants for individual passes) it is
possible to improve traversal performance by finding any
hit-point, instead of the closest, to choose a traversal order
that exploits the problem’s structure [18, 39], or to ignore
transparency or alpha maps which makes it possible to ig-
nore surface textures during primitive intersection. Also note
different time constraints, e.g. algorithms suitable for interac-
tive rendering [58] are not generally good choices in a movie
production context [10].
Summary. The implementation of a production ray trac-
ing system as well as research considering new approaches
has to take into account a vast number of existing variants
from which to choose, which is not a trivial task. Because
of the holistic nature of the problem (caused by the tangled
interaction between visual features, algorithmic representa-
tions, and the actually employed hardware architecture), it
is generally not possible to determine image quality and
performance of a given algorithm ahead of time. Thus, each
solution has to be compared to many other implementations
using different choices. In practice, this domain exploration
is typically an ad-hoc process with lots of repetitive work
and copy-and-paste. This is where comprehensive domain
specific systems can help developers and vendors to both
make well founded implementation choices and arrive at the
best product possible.



In this paper, we investigate how the problem of exploring
and managing variants of ray traversal algorithms can be
tackled using a simple, existing meta-programming frame-
work. The following section will give a short introduction
to this system, and Section 5 will show how we apply it
to construct a lightweight formalism that will be used for
describing ray traversal variants.

3. C-Mera: Rewriting C
The C-Mera system [49] is a very simple compiler that
transforms a notation based on S-Expressions [34] (sexp)
for C-like languages to the native syntax of that language,
e.g. from sexp-C to C, and from sexp-CUDA to CUDA. The
semantics of the sexp-based notation is identical to that of
the native language, i.e. no inherent abstraction or layering
is introduced.

Using S-Expressions means that the program is syntac-
tically written in form of nested lists, such as the following
example of a CUDA kernel definition:
1 (define-cuda-kernel copy ((int N))
2 (if (< threadIdx.x N)
3 (set dst[threadIdx.x] src[threadIdx.x])))

This notation is simple and strictly uniform (nested lists
where the first entry provides the content’s interpretation),
albeit somewhat unfamiliar to users accustomed to C. We
chose to use it as it directly maps to a syntax tree: the first
element of each list gives the type of the tree node and the
following elements its sub-nodes. This is also the reason that
prefix notation is used for arithmetic expressions.

As C-Mera itself is built as an embedded language in
Common Lisp, we exploit its macro system to implement
syntax tree transformations. This works by introducing
special node types which will not itself be found in the
compiler’s output, but are invoked to restructure parts of the
tree below it. As an example, in the kernel definition above
we used a node called define-cuda-kernel. This node could be
implemented to expand into a syntax tree that generates a
global void function with the following macro:
1 (defmacro define-cuda-kernel (name args &body body)
2 ‘(function ,name ,args -> (__global__ void)
3 ,@body))

In its simplest form this is just a templating mechanism that,
given the example above, yields
1 (function copy ((int N)) -> (__global__ void)
2 (if (< threadIdx.x N)
3 (set dst[threadIdx.x] src[threadIdx.x])))

which in turn generates the following CUDA code:
1 __global__ void copy(int N) {
2 if (threadIdx.x < N)
3 dst[threadIdx.x] = src[threadIdx.x];
4 }

In the remainder of this section we will present some
more examples of C-Mera’s notation and describe a few
other simple transformations, while the following sections
will show how thereby more sophisticated, yet lightweight
meta-programming techniques can be applied in a graphics
context while keeping full control over the generated code.

Figure 1 demonstrates the basic syntax used to write
C-Mera code, and shows the code generated by it. It can
be seen that, as long as no meta programming is used, the
input syntax is trivially converted to the output code. The
first function (lines 1-2) is a simple dot product of three-
component vectors. It shows how function definitions are

1 (function dot ((vec3f a) (vec3f b)) -> float
2 (return (+ (* a.x b.x) (* a.y b.y) (* a.z b.z))))
3
4 (function dot ((vecNf a) (vecNf b)) -> float
5 (decl ((acc (* a[0] b[0])))
6 (for ((int i 1) (< i (min a.N b.N)) ++i)
7 (+= acc (* a[i] b[i])))
8 (return acc)))

—⇓—
1 float dot(vec3f a, vec3f b) {
2 return (a.x * b.x) + (a.y * b.y) + (a.z * b.z);
3 }
4
5 float dot(vecNf a, vecNf b) {
6 float acc = a[0] * b[0];
7 for (int i = 1; i < min(a.N, b.N); ++i)
8 acc += (a[i] * b[i]);
9 return acc;

10 }

Figure 1. Dot-product definitions written in C-Mera syntax,
together with the generated output program.

structured, and even though on first glance the code looks
quite different from C, at closer inspection the mapping is
straightforward. The second example (lines 4-8) illustrates
local variable declarations and control structure. Note how
some shorthands (most notably increments and subscripts)
have been carried over from C for use in simple expressions.

The most compelling property of using such a uniform
notation is the ease with which it can be transformed.
Figure 2 shows a simple example where we first define a
macro to unroll a code fragment, and then use it to unroll
the loops of a matrix multiplication. This example shows how
seamlessly meta code in C-Mera interacts with target code
(meta code is highlighted in red). It furthermore illustrates
the impact of even small-scale meta programming: the four
lines of macro code are used in the mmult function in place of
for-loops to generate 64 lines of simple assignment statements
(indicated at the bottom). No further language support was
required for this transformation.2

Regarding broader applicability it should be noted that
C-Mera supports transformations for C, C++, CUDA, and
GLSL code and can easily integrate even nonstandard lan-
guage extensions one often finds in the proprietary compilers
for specific architectures or domains. This is already visible
in Figure 1 as the generated code is not at all restricted
to a single target platform. Furthermore, programs can be
written to properly transform to a number of platforms by
using macros. We shall show an example for this in Section 4.

To conclude: C-Mera is, at first, just another syntax to
write C programs, which makes it accessible to ordinary
programmers. Since mapping from input to output code is
straightforward pragmatic solutions are easily possible in
cases where the output must be exactly of a given form. How-
ever, programs written in C-Mera can easily be transformed
by means of meta programming, i.e. with semantics cast
into syntax sophisticated transformations become possible.
Thereby, C-Mera paves a lightweight and unobtrusive path
to the provisioning of generative abstractions.

2Of course, such simple transformation are for illustration only
and could be equally well performed with many other techniques,
such as Eigen’s [22] expression templates, or are even built in into
modern optimizing compilers. However, both are not necessarily
available in our domain.



1 (defmacro unroll ((var start end) &body code)
2 ‘(progn ,@(loop for i from start to end collect
3 ‘(symbol-macrolet ((,var ,i))
4 ,@code))))

1 (macrolet ((access (obj row col)
2 ‘(aref ,obj ,(+ (* col 4) row)))
3 (mult (i) ‘(* (access lhs.a y ,i)
4 (access rhs.a ,i x)))
5 (curr () ‘(access res.a x y)))
6 (function mmult ((mat4 lhs) (mat4 rhs)) -> mat4
7 (decl ((mat4 res))
8 (unroll (x 0 3)
9 (unroll (y 0 3)

10 (set (curr) (mult 0))
11 (unroll (i 1 3)
12 (+= (curr) (mult i)))))
13 (return res))))

—⇓—
1 mat4 matrix_mult(mat4 lhs, mat4 rhs) {
2 mat4 res;
3 res.a[0] = (lhs.a[0] * rhs.a[0]);
4 res.a[0] += (lhs.a[4] * rhs.a[1]);
5 ...
6 return res;
7 }

Figure 2. Top: Macro for unrolling code, similar to the
for-loop syntax. Center: The macro is used multiple times
to completely unroll the matrix multiplication. Bottom:
Yielding 64 lines of straightforward assignments. Note how a
few convenience macros (access, curr, mult) make for very
concise code in the loop body. Meta code is highlighted.

4. Lightweight Feature Composition
for Computer Graphics

To manage and explore the multitude of implementation
options (cf. Section 2) we propose to use a method inspired
by feature-oriented programming [4, 43], where we define
a feature to be a conceptional, composable element of
the problem domain. In computer graphics, the (efficient)
implementation of features always depends on the employed
target architecture, which we account for by target-specific
feature derivatives.

4.1 Composition System
In the following, we introduce these basic concepts of our
composition system by the example of a potentially parallel
computation.

Features are introduced with
1 (define-feature feature-name (arguments-to-invocation))

which, in our example of a parallelizable process can be
written as:
1 (define-feature parallel-fn
2 (name args (i N) &body body))

This specifies that the syntax tree node parallel-fn can be
used to define a function that runs the embedded code in
parallel, where i will denote the iteration count and N the
range. Without any details of the actual implementation, it
can be used as follows:
1 (parallel-fn accum ((float *a) (float *b)) (idx N)
2 (+= a[idx] b[idx])))

Here, a function of two arguments is parallelized, where the
iteration count and limit are idx and N, respectively. The
details of the parallelization do not clutter up the algorithm.

1 (implement parallel-fn (cuda-target)
2 (let ((kernel (symbol-append ’kernel- name))
3 (args+N (append args ‘((int ,N))))
4 (actual (loop for arg in args
5 append (last (flatten arg)))))
6 ‘(progn
7 (function ,kernel ,args+N
8 -> (__global__ void)
9 (decl ((int ,i (+ (* blockIdx blockDim)

10 threadIdx)))
11 (if (>= idx N)
12 (return))
13 ,@body))
14 (function ,name ,args+N -> void
15 (decl ((int thd 256)
16 (int blk (+ (/ ,N thd)
17 (? (% ,N thd) 1 0))))
18 (funcall ,kernel
19 (blk thd) ,@actual ,N))))))

Figure 3. Implementation for general parallelization of
array operations that generates host (line 14) and device-side
(line 17) code and properly manages border cases (lines 11-12
and 4-5) and forwarding of arguments (lines 4-5 and 19).

Implementation derivatives for such a feature (honoring
different targets) can be defined by
1 (implement feature-name (targets) implementation-body)

A CPU implementation of the ‘parallel-function’ feature,
using OpenMP, is provided below:
1 (implement parallel-fn (cpu-target-omp)
2 ‘(function ,name ,(append args ‘((int ,N))) -> void
3 (pragma omp parallel)
4 (for ((int ,i 0) (< ,i ,N) (+= ,i 1))
5 ,@body)))

As can be seen, this is a plain function definition with an
iteration statement wrapped around the provided code and,
given the invocation above, expands accordingly:
1 void accum(float *a, float *b, int max) {
2 #pragma omp parallel
3 for (int idx(0); idx < max; idx += 1)
4 a[idx] += b[idx];
5 }

As shown above, implementations are selected by targets
which are defined as:
1 (define-target target-name [base-target])

This can be used to also define derived targets, which, if no
implementation for them is present, are configured to use the
parent’s implementation. The brackets indicate that the base-
target argument is optional (for default implementations, see
Section 4.2). The CPU target and the derived OpenMP
target, followed by the CUDA target, are specified by:
1 (define-target cpu-target)
2 (define-target cpu-target-omp cpu-target)
3 (define-target cuda-target)

Note that many more targets are possible, and that multiple
targets can be specified for implementations, such as:
1 (implement parallel-mult (cpu-target-omp avx2) ...)

During composition, the most specialized target will be used.
Hence, it is easy to provide and explore target-specific feature
derivatives.

A different (and more elaborate) implementation for
invoking CUDA functions for parallel computations is shown
in Figure 3. In contrast to the single function using OpenMP



1 (defclass default () ())
2 (defvar *generics* nil)
3
4 (deflmacro define-target
5 (name &optional (base-target ’default))
6 ‘(defclass ,name (,base-target) ()))
7
8 (deflmacro define-feature (name args)
9 (let ((gen (symbol-append ’feature- name)))

10 ‘(progn
11 (push (list (defgeneric ,gen (c1 c2 c3))
12 (cons ’,name (list ’,args)))
13 *generics*)
14 (defmethod ,gen ((c1 t) (c2 t) (c3 t)) (values)))))
15
16 (deflmacro implement
17 (feature (c1 &optional (c2 ’default) (c3 ’default))
18 &body body)
19 ‘(defmethod ,(symbol-append ’feature- feature)
20 ((c1 ,c1) (c2 ,c2) (c3 ,c3))
21 ‘(let ((parent ,(call-next-method)))
22 (declare (ignorable parent))
23 ,’,@body)))
24
25 (deflmacro make-config (&rest rest)
26 (let ((config (gensym)))
27 ‘(progn
28 (defclass ,config ,rest ())
29 (make-instance ’,config))))
30
31 (defmacro with-config (config &body body)
32 (lisp (let ((c (eval config)))
33 ‘(macrolet ,(loop for (feature head) in *generics*
34 collect ‘(,@head ,(funcall feature c c c)))
35 ,@body))))

Figure 4. The complete implementation of our composition
system using C-Mera and Common Lisp is remarkably short.

it generates two functions: a host-side stub (line 14), and
a CUDA kernel (line 7) with a derived name (line 2). The
host-side function takes care to properly invoke the CUDA
kernel. This example relies on some meta programming (lines
4-5) to extract the list of actual function arguments which
have to be forwarded to the kernel (line 19). For the use
case of the simple accumulation function shown above a
much shorter implementation could be devised. However, the
implementation given in Figure 3 is very general and applies
to any function parallelized over one-dimensional arrays, i.e.
it always generates the matching pair of host and device-side
functions and takes care of proper argument forwarding (lines
4-5 and 19) and border handling (lines 11-12).

Overall, the presented composition system is a simple, yet
very clear method to implementing variants, especially with
respect to separation of targets.

4.2 Complete Implementation
The complete code of our composition scheme is given in
Figure 4 and its implementation will be described in the
following. It should be noted that the complete code is a
bare 35 lines, which is due to the fact that it maps the
feature/target system described above to object oriented
meta code that runs at compile time (mapping it to CLOS [8]).
This shows yet again that the basic C-Mera system facilitates
the provisioning of powerful and clean abstractions with
minimal engineering overhead.

As can be seen in lines 4-6 of Figure 4, the definition of a
target declares a class of the same name, which also provides
for derived targets and mix-ins.

The definition of features (lines 8-14) is, correspondingly,
mapped to the definition of generic functions on targets

(line 11). Note that each feature is defined with an empty
default implementation (line 14) and that multiple targets
are provided in the method parameter list to enable dispatch
on combined targets (the limitation to triple-dispatch is easily
extended).

Similarly, feature implementations are provided by meth-
ods on those generic functions (lines 16-23), and it can be
seen that derived features obtain the parent feature’s code
in an established, multi-parent fashion (line 21). Note the
default-target defined on line 1. It can be used to provide de-
fault implementations that suit all targets that don’t define a
more specialized method. Furthermore, with derived features,
default implementations on any level of the feature-hierarchy
can be provided, simply by implementing a feature for the
intermediate target.

Different targets can be combined to a compound con-
figuration using make-config (lines 25-29), and finally, the
with-config (lines 31-35) form can be used to provide all the
necessary definitions. These are stored during feature defi-
nition (lines 11-12) and then collected (line 33-34) during
configuration. At this time the previously defined methods
are called to obtain the definitions to be used for the provided
configuration, as in the following example:

1 (with-config (make-config (cpu-target-omp avx2))
2 (parallel-fn accum ((float *a) (float *b)) (idx N)
3 (+= a[idx] b[idx])))

In conclusion, our composition system is provided by a
lightweight and elegant mapping to object oriented code
that is run at the time the to-composed program is being
compiled.

5. Case Study: Ray Tracing
To evaluate the applicability of our composition system
defined in the previous section to the context of rendering we
implemented a ray tracing system that allows for easy domain
exploration by feature composition, while also making it
simple to extend the set of available variants. The system is
used to facilitate exploration by domain experts; interfaces
for intermediate users can be built on this basis. We chose
ray traversal as a realistic use case as even though there is a
plethora of options regarding algorithmic and architecture-
specific variants (see Section 2) the resulting implementations
typically consist of only a few dozen lines of code and are
comprehensible even in a paper context.

Using the system described in Section 4 we will describe
two use cases. Section 5.1 shows how code can be formulated
by use of domain-specific features, and how different imple-
mentations of these features can be added. The focus of this
examination is how two different top-level approaches to the
primary hierarchy traversal loop can be managed, namely
standard traversal where each thread only considers a single
ray, and traversal using persistent threads [1], a method that
manually recycles GPU threads and takes care of high warp
utilization. The second use-case, presented in Section 5.2,
shows strongly tangled features at the stage where leaf nodes
are tested for overlap with the ray. Our example considers
64 different (and relevant) combinations where the longest
resulting variant is 20 lines of code.

5.1 High Level Ray Traversal
In the previous section we have shown a very small, but quite
effective configuration system implemented with C-Mera. We
have demonstrated how it can be used to generalize the



1 (deftracer default (make-instance ’default-config)
2 (prepare-ray (rid (thread-x) (thread-y))
3 (with-local-stack (stack sp 32)
4 (with-local-node
5 (ray-management (rid (thread-x) (thread-y) node-idx)
6 (while true
7 (load-node node-idx)
8 (if (is-inner curr)
9 (intersect-inner stack sp node-idx curr)

10 (progn (intersect-leaf curr)
11 (if (>= sp 0)
12 (set node-idx stack[sp--])
13 (break))))))))))

Figure 5. Implementation of the standard ray traversal
scheme. Note that the different syntax tree nodes are features
that are configurable for specific variants via implement.

concepts of ray-iteration and kernel definition for different
target platforms, namely C++ and CUDA.

This section will continue the previous example and show
how our system can be used to implement ray traversal for
the mentioned platforms while also providing a choice of very
different algorithms. To this end we present a straightforward
textbook ray tracing layout, as well as ray traversal using
persistent threads [1]. For the CUDA target the choice
between those two will be available. This higher level example
illustrates how easily a structurally different implementation
can be constructed based on existing features.

The complete system is available in our supplemental
material (together with a version implemented using C++
template meta programming) and contains a few more
variants, see Section 5.3. Some of them will be shortly
introduced in the following presentation of the default, text-
book style traversal algorithm. This default algorithm is a
stack based BVH traversal with a single loop. Within this
loop the boxes of inner nodes are intersected with the ray
and their children pushed to the stack, if appropriate. Leaf
nodes are intersected and, for shadow rays, can terminate ray
traversal. This algorithm is a good fit for CPU architectures
as, e.g., simultaneous multi-threading, benefits from thread
divergence. We believe that our notation, shown in Figure 5,
nicely reflects this description and provide a few details in
the following.

The first line of Figure 5 defines a tracer function (either as
normal C++ function, or as CUDA kernel with appropriate
host-stub). The next line sets up the index of the ray to
trace. We define this feature as follows:
1 (define-feature prepare-ray
2 ((ray-idx x y) &body body))

And implement it as CPU and CUDA variants:
1 (implement prepare-ray (default)
2 ‘(decl ((const int ,ray-idx (+ (* ,y w) ,x)))
3 ,@body))
4
5 (implement prepare-ray (cuda-target)
6 ‘(if (and (< ,x w) (< ,y h))
7 ’parent))

This means that a variable to hold the ray-index is introduced
and, for the CUDA variant, we also check for valid thread
indices. Note how the CUDA declaration is derived from the
CPU version. This allows more specialized implementations
to take advantage of more general versions with a similar root.
In lines 3-5 of Figure 5 we introduce stack management, the
current node (configurable for different node types) and ray
data (configurable for exact and inexact rays). The rest

1 (define-feature ray-management
2 ((ray-idx x y node-idx) &body body))
3
4 (implement ray-management (cuda-target persistent-threads)
5 ‘(decl ((__shared__ volatile int next-ray[6])
6 (int ,ray-idx))
7 (while true
8 ...
9 (if terminated

10 ...
11 (if (>= ,ray-idx (* w h))
12 (break))
13 (set closest t-max)
14 (load-ray ,ray-idx))
15 ,@body
16 (set (aref intersections ,ray-idx) closest))))

Figure 6. Reduced version of our persistent threads imple-
mentation illustrating the change in control flow.

of the code specifies a very general traversal framework
where nodes are intersected and managed via the previously
introduced stack. The last four lines take care of leaf nodes
and potentially terminate traversal. Apart from adding
persistent threads to this scheme, the management of triangle
intersections will also be covered later in this section.

Traversal using persistent threads [1] requires a different
code layout. Here, nodes are still managed by a stack, but
the kernel is only invoked with as many threads as can run in
parallel. These threads then manage their mapping to rays
using atomic counters and dynamically reload rays should
warp occupancy fall below a certain threshold. Therefore, the
algorithm loops as long as there are still rays to be processed.
This method is in contrast to the approach presented above
and only applicable to ray traversal on the GPU.

Figure 6 shows a (reduced) version of how the correspond-
ing feature, ray-management, is declared and implemented for
the cuda-target with persistent-threads. The most interesting
part is that the code this feature wraps around is enclosed
in another loop which implements the procedure described
above. The scope of this loop as well as the wrapped code
are highlighted in Figure 6. This extension thus introduces
a marked change in control flow of the general algorithm
which, by virtue of our abstraction mechanism, is hidden
as an implementation detail. We believe that this example
illustrates how higher level algorithmic variations can be
implemented while preserving the clarity of the basic control
flow.

5.2 Low Level Triangle Intersection
The previous example employed a rather high-level point of
view, where the algorithm was modified top-down to change
the primary flow of the program. In the following we will
present a lower level scenario, along with its features and
how they are configured to work together. We believe this
example to be very relevant as many different choices have
to be taken for this part of the traversal algorithm and it
is crucial for an exploration system to support such highly
tangled features.

Figure 8 shows code to process triangles from leaf nodes,
together with the features that influence each line. As an
example the first two lines are appropriate when triangles
are stored in leaf nodes. However, when only a single triangle
index is stored leaf node addresses can be interpreted as
triangle addresses [2]. The number of triangles stored in each
leaf is then encoded by invalid triangles stored at the end of
each triangle list. This choice would change line 1 and remove



Ray
Traversal

Architecture

CPU CUDA

Persistent
Threads

Intersect
Inner Node

Intersection
Scheme

Current
Node

Child Nodes

Box
Intersect

Slabs Precomp.

SSE Box
Intersection

Node Layout

Compact 2F4 SoA

Node
Storage

Plain Array Texture

Ray Type

Closest Hit Shadow
Rays

Intersect
Leaf Node

Leaf Repre-
sentation

Implicit Explicit

AVX Tri
Intersection

Triangle
Storage

Plain Array Texture

α-maps Algorithm

Möller . . .

Figure 7. Family of ray tracing variants implemented using our composition system.

1 int start = ...; // from node | implicit leaf
2 int end = ...; // from node | N/A
3 tri_intersection is(invalid);
4 for (; start < end; ++start) // with | w/o border
5 tri_t tri = load_triangle(start); // storage
6 if (invalid_triangle(tri)) // implicit leaf
7 break; // implicit leaf
8 if (intersect(tri, ray, is)) // algorithm
9 if (is.t < closest.t) // closest hit

10 if (eval_alpha_map() == 0) // alpha mapping
11 continue; // alpha mapping
12 closest = is;
13 break; // only shadow rays
14 if (closest.valid()) // only shadow rays
15 break; // only shadow rays

Figure 8. An illustration of feature tangling for the traversal
of leaf nodes.

line 2. Furthermore for the iteration in line 4 the termination
case would be dropped and in its place the explicit check
for invalid triangles (lines 6 and 7) would be used. Similar
changes are required for different storage options for triangles,
different intersection methods, whether the closest hit is to
be found, or shadow rays are cast, and if code supporting
alpha mapping should be inserted. Our supplemental material
contains a version of this code using our feature-oriented
approach (and our C++ traversal mentioned above also
includes some of the choices illustrated in Figure 8).

The implementation using our configuration system is as
follows.
1 (decl ((tri_intersect closest -1)
2 (tri_intersect is))
3 (for-each-triangle-in-node
4 (load-node
5 (intersect-triangle tri ray is))))

where different features can add to the implementation of
intersect-triangle, while the outer traversal loop is imple-
mented by the feature for-each-triangle-in-node, which takes
care of explicit or implicit nodes. The following example
illustrates the former case:
1 (implement for-each-triangle-in-node (explicit-node)
2 ‘(decl ((int start (load_from_node))
3 (int end (load_from_node)))
4 (while (< start end)
5 ,@body
6 ++start)
7 (early-out)))

5.3 Study Results
In this section we show results of our approach as applied to
the two examples mentioned previously. The configuration
options implemented for the high-level ray tracing variants,

as described in Section 5.1 and depicted in Figure 7 (ex-
cept the “Intersect Leaf Node” part), are: tracing on the
CPU, tracing on the GPU with CUDA, optionally with
persistent threads [1] (on the GPU), or using SSE (on the
CPU), directly intersecting the nodes during traversal, or
intersecting and sorting the two child nodes of each node
encountered. Furthermore we provide different node layouts
(using an integer-based, compact structure, a float-based
array [2], and a structure of arrays), two different variants
to intersect bounding boxes [1, 27], and whether to find the
closest intersection, or terminate at the first intersection
found. We compare using our feature-oriented system to
a version using C++ template meta programming (TMP)
regarding code-size. Our implementation is 275 lines of code,
whereas the TMP approach takes 960 lines to implement the
same set of feature-combinations. Furthermore, the struc-
ture of our implementation is easily accessible while with
the TMP version it is hidden behind template-syntax and
parameter-forwarding.

We also implemented the low-level example described in
Section 5.2 using our approach. The “Intersect Leaf Node”
part of Figure 7 shows a diagram of the implemented feature
variations, namely if leaf nodes are explicitly stored (offset
and length) or implicit, leaving room for the offset, only.
This requires that the length of the triangle-array also be
stored implicitly, which is done by appending an invalid
triangle to each array [2]. Further variations are how the
nodes are stored (in global or texture memory), the ray
type (see above), which ray-triangle intersection algorithm
should be used [38], and whether alpha-maps (transparency
by textures) is active. Our implementation consists of 150
lines of code resulting in 64 different versions of this sub-tree
of the diagram (plus node layout).

Overall there are already more than 2300 valid and
plausible variants provided by the features implemented
– even those are yet only a small subset of the features de-
scribed in Section 2. Our current implementation focuses
on architecture-specific variations and limitations in the
supported feature-set of ray traversal. We did not yet con-
sider different acceleration structures, primitives, and other
traversal-related options, such as using packets, stack-less
traversal, or ray sorting, but adding further variants is, as
has been shown in this section, easily possible.

As the goal of our method is making the process of domain-
exploration more manageable we do not show performance
measurements. With our generative technique, developers are
able to generate exactly the desired code, which includes any
reference provided. Hence, there is no inherent performance
trade-off.

For reference, our supplemental material contains all the
implementations mentioned above.



6. Discussion and Related Work
In this paper we propose an approach to problem-domain
exploration using generative programming techniques. Sec-
tion 4 presents a simple technique to implement algorithmic
variation and in Section 5 we apply it to the domain of ray
traversal kernels. Therefore we will focus on related work
concerned with domain-specific abstractions, and only touch
upon the topic of general generative programming methods.
For a comprehensive summary we refer to Czarnecki and
Eisenecker [11].

The most ubiquitous approach to generative programming
is C++ template meta programming (TMP) [11, 55]. It has
been applied to a vast range of problems, also in computer
graphics. An example is RTfact [52], an active library [12] for
ray-tracing variants. However, we argue that, while certainly
comfortable and unobtrusive to use, exploration is seriously
impaired by this approach as the maintenance overhead of
the meta code becomes a burden in itself [19, 35]. We pro-
vide TMP reference code with our supplemental material to
compare it to our proposed solution. In general, implemen-
tors of active libraries strive for easy-to-use interfaces for
intermediate users and the latter do not necessarily have to
deal with the inherent complexity of TMP. Domain-specific
languages take this approach one step further by provid-
ing languages and generators tailored to a specific problem
set, thereby completely hiding the inner workings. Exam-
ples include HIPAcc [37] and Halide [44], image processing
languages that target the generation of performant code
for heterogeneous architectures from problem-oriented input
program specifications.

However, while these abstractions are a tremendous tool
for intermediate developers to come up with portable, yet
fairly efficient graphics code in many cases, implementation-
centric domain exploration is done by experts that require full
disclosure. In a sense, C-Mera addresses rather the designers
of active graphics libraries and DSLs than their users, as the
former also have to do quite a bit of domain exploration to
come up with efficient generation schemes for each particular
architecture. Nevertheless, using C-Mera also to design DSLs
built on top of our ray-tracer family is perfectly possible.
Such a scheme would also appeal to DSL users that still
require fine-grained control over the generated code.

Multi-stage programming is a paradigm where a program-
ming language is embedded into another language, the host
language. The embedded program is transparently compiled
or transformed into the host language as part of the compila-
tion of the embedding program. Examples of such approaches
include AnyDSL [36], which allows control of compile-time
computation (partial evaluation), MetaOCaml [9], a multi-
stage extension for OCaml, and Terra [14], a low-level lan-
guage embedded in Lua. Rompf and Odersky [45] implement
staging by type annotations (LMS). Taha [54] provides a
very approachable introduction to multi-stage programming.
Fredriksson [19] proposes an idea similar to the approach
taken by C-Mera. Also, Terra and AnyDSL are very close
to our work in that we use a very high level language to
describe program transformations of a lower level language.
Similarly, they also provide homogeneous notation.

In contrast to AnyDSL and LMS, our approach is not truly
embedded, i.e. during more advanced meta programming the
user is required to write Lisp code, not C code, to implement
transformations. Furthermore, as C-Mera’s macro system is
borrowed from Common Lisp it is not hygienic, i.e. care has
to be taken to avoid unwanted capture. Since its focus is not
on working on a typed AST, but on syntactic abstractions,

global modifications are not trivial. But even in the face of
these limitations, we have shown how easily an advanced
feature composition system can be built using C-Mera: The
more direct approach taken by C-Mera also makes it trivial
to force the compiler to generate a certain C or machine code
sequence. So while providing less abstraction than other
approaches, direct control, little requirements in tooling
(none in the OEM case) and simple porting to different
platforms makes C-Mera and our light-weight composition
system attractive, especially for pragmatic settings.

The general importance of implementation-domain ex-
ploring (that is, the systematic evaluation of implementation
variants) has been demonstrated in recent work of Peters
and Klein [41], who evaluate a vast number of different basis
functions to find the best trade-off between shadow quality
and run time for shadow filtering algorithms. Another exam-
ple is the work of Aila and Laine [1], who investigate how
to best map ray traversal to modern GPU architectures. In
Section 2 we show that a large body of research is available
on ray traversal. Based on different aspects of this research
we show how our system can be used to capture common
concepts while providing ample opportunity for exploring
further variants.

The opportunity to easily add “ad-hoc” target-specific
derivatives of features offered by our composition system is
often necessary in computer graphics because of the tangled
interaction of the concrete problem, chosen algorithms, and
hardware properties. Subtle implementation details can
have a tremendous impact on performance and quality,
which so far leaves little opportunity to apply measures for
the automatic prediction or optimization of nonfunctional
properties, as for instance suggested by Siegmund and
colleagues [50, 51] for software product lines.

Even though our case study focuses on ray traversal, we
would like to stress that our approach is not specifically
designed for this use case: C-Mera as well as our composition
system implemented with it are generally applicable.

Experience has shown, however, that C-Mera could be
improved with respect to “programmer compatibility”: The
unfamiliar notation of C-Mera discourages many developers
in our domain (most of which have an upbringing as “hard-
core C hackers”) – even though, on the other hand they are
typically very appealed by the approach in general. While
programmer compatibility could certainly be improved by
switching to a syntax developers from this context are more
accustomed to, we also think that another aspect under-
lines the importance of lightweight, low-risk and transparent
approaches towards meta programming: In a team setting,
single developers can start using C-Mera on small pieces
of code to ease their own work with little to no impact on
their team mates. Instead of manually deriving variants to
explore the implementation domain, they apply generative
techniques, but keep full control over the resulting C-type
code, which they eventually pass to their colleagues.

7. Conclusions
Computationally intensive 3D computer graphics has become
an ubiquitous element of modern computing systems, from
high-end movie production down to user interfaces in small-
scale embedded control systems, such as car instruments.
However, despite of the availability of higher-level abstraction
frameworks (such as CUDA or OpenGL): To come up with
a truly efficient implementation, developers still have to
put enormous efforts into finding fitting solutions – and the
situation gets even worse by the increasing heterogeneity



of the underlying hardware. Small changes in algorithms,
data structures, hardware revisions or even instruction
scheduling by the compiler can have a dramatic impact on
the resulting performance [1]; in practice even experienced
graphics engineers have to explore and refine many variants
to come up with a good solution.

In this setting, we propose meta programming with C-
Mera and a very lightweight feature composition system
as a pragmatic means for efficient implementation-domain
exploration. Our approach makes it easy to define new
variants and architecture-specific feature derivatives can be
adopted incrementally, and it requires only little tool support.
The possibility to provide high-level feature abstractions, yet
keep full control over the resulting code in a C-type language
facilitates application in domains that require fine control
over the code regarding externally imposed constraints, such
as certifiability, or the necessity to use old and proprietary,
but proven-in-use, language and compiler technology as well
as during research striving for maximal performance while
evaluating numerous alternatives.

Acknowledgments
This work was supported by the Research Training Group
1773 “Heterogeneous Image Systems” (http://hbs.fau.de),
funded by the German Research Foundation (DFG).

References
[1] T. Aila and S. Laine. Understanding the efficiency of ray

traversal on gpus. In Proc. High-Performance Graphics 2009,
pages 145–149, 2009.

[2] T. Aila, S. Laine, and T. Karras. Understanding the efficiency
of ray traversal on GPUs – Kepler and Fermi addendum.
NVIDIA Technical Report NVR-2012-02, NVIDIA Corpora-
tion, June 2012.

[3] J. Amanatides and A. Woo. A fast voxel traversal algorithm
for ray tracing. In In Eurographics ’87, pages 3–10, 1987.

[4] S. Apel and C. Kästner. Virtual separation of concerns - a
second chance for preprocessors. Journal of Object Technology,
8(6):59–78, 2009.

[5] A. Appel. Some techniques for shading machine renderings
of solids. In Proceedings of the April 30–May 2, 1968, Spring
Joint Computer Conference, AFIPS ’68 (Spring), pages 37–45,
New York, NY, USA, 1968. ACM.

[6] R. Barringer and T. Akenine-Möller. Dynamic ray stream
traversal. ACM Trans. Graph., 33(4):151:1–151:9, July 2014.

[7] C. Benthin, S. Woop, M. Nießner, K. Selgrad, and I. Wald.
Efficient ray tracing of subdivision surfaces using tessellation
caching. In Proc. High-Performance Graphics 2015, 2015.

[8] D. G. Bobrow, L. G. Demichiel, R. P. Gabriel, S. E. Keene,
G. Kiczales, and D. A. Moon. Common Lisp Object System
specification 1. programmer interface concepts. Lisp and
Symbolic Computation, 1(2):245–298, Sept. 1988.

[9] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing
multi-stage languages using asts, gensym, and reflection.
In Proceedings of the 2Nd International Conference on
Generative Programming and Component Engineering, GPCE
’03, pages 57–76, New York, NY, USA, 2003. Springer-Verlag
New York, Inc. ISBN 3-540-20102-5.

[10] P. Christensen, J. Fong, D. Laur, and D. Batali. Ray tracing
for the movie ‘cars’. Symposium on Interactive Ray Tracing,
0:1–6, 2006.

[11] K. Czarnecki and U. W. Eisenecker. Generative Programming.
Methods, Tools and Applications. Addison-Wesley, May 2000.
ISBN 0-20-13097-77.

[12] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, and
T. Veldhuizen. Generative programming and active libraries.
In M. Jazayeri, R. Loos, and D. Musser, editors, Generic
Programming, volume 1766 of Lecture Notes in Computer
Science, pages 25–39. Springer-Verlag, 2000. ISBN 978-3-540-
41090-4.

[13] H. Dammertz, J. Hanika, and A. Keller. Shallow bounding
volume hierarchies for fast simd ray tracing of incoherent rays.
Comput. Graph. Forum, 27(4):1225–1233, 2008.

[14] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek.
Terra: A multi-stage language for high-performance comput-
ing. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
’13, pages 105–116, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2014-6.

[15] P. Dutre, K. Bala, P. Bekaert, and P. Shirley. Advanced
Global Illumination. AK Peters Ltd, 2006.

[16] M. Ernst and G. Greiner. Early split clipping for bound-
ing volume hierarchies. In Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, RT ’07, pages 73–78,
Washington, DC, USA, 2007. IEEE Computer Society.

[17] M. Ernst and G. Greiner. Multi Bounding Volume Hierarchies.
In IEEE Symposium on Interactive Ray Tracing, pages 35–40,
Aug. 2008.

[18] N. Feltman, M. Lee, and K. Fatahalian. SRDH: Specializing
BVH Construction and Traversal Order Using Representative
Shadow Ray Sets. In C. Dachsbacher, J. Munkberg, and
J. Pantaleoni, editors, Eurographics/ ACM SIGGRAPH
Symposium on High Performance Graphics. The Eurographics
Association, 2012.

[19] A. Fredriksson. Amplifying C. http://voodoo-
slide.blogspot.de/2010/01/amplifying-c.html, 2010.

[20] A. S. Glassner. Tutorial: Computer graphics; image synthesis.
chapter Space Subdivision for Fast Ray Tracing, pages 160–
167. Computer Science Press, Inc., New York, NY, USA, 1988.
ISBN 0-8186-8854-4.

[21] A. S. Glassner, editor. An Introduction to Ray Tracing.
Academic Press Ltd., London, UK, UK, 1989. ISBN 0-12-
286160-4.

[22] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[23] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek. Realtime
ray tracing on gpu with bvh-based packet traversal. In
Proceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing, RT ’07, pages 113–118, Washington, DC, USA,
2007. IEEE Computer Society.

[24] M. Hapala, T. Davidovic, I. Wald, V. Havran, and P. Slusallek.
Efficient stack-less bvh traversal for ray tracing. In 27th Spring
Conference on Computer Graphics (SCCG 2011), 2011.

[25] V. Havran and J. Bittner. On improving kd-trees for ray
shooting. Journal of WSCG, 10(1):209–216, February 2002.

[26] T. Karras. Maximizing parallelism in the construction
of bvhs, octrees, and k-d trees. In Proceedings of the
Fourth ACM SIGGRAPH / Eurographics Conference on
High-Performance Graphics, EGGH-HPG’12, pages 33–37,
Aire-la-Ville, Switzerland, Switzerland, 2012. Eurographics
Association.

[27] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes.
In Proceedings of the 13th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’86, pages
269–278, New York, NY, USA, 1986. ACM.

[28] A. Keller, T. Karras, I. Wald, T. Aila, S. Laine, J. Bikker,
C. P. Gribble, W. Lee, and J. McCombe. Ray tracing is
the future and ever will be.. In International Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH
2013, Anaheim, CA, USA, July 21-25, 2013, Courses, pages
9:1–9:7, 2013.



[29] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding volume
hierarchies of k-dops. IEEE Transactions on Visualization
and Computer Graphics, 4(1):21–36, Jan. 1998.

[30] A. Lagae and P. Dutré. Compact, fast and robust grids for
ray tracing. Computer Graphics Forum, 27(4):1235–1244,
2008.

[31] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast BVH Construction on GPUs. Computer
Graphics Forum, 2009.

[32] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung,
S. Lee, H.-S. Park, and T.-D. Han. Sgrt: A mobile gpu
architecture for real-time ray tracing. In Proceedings of the
5th High-Performance Graphics Conference, HPG ’13, pages
109–119, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2135-8.

[33] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing
using space subdivision. Vis. Comput., 6(3):153–166, May
1990.

[34] J. McCarthy. History of programming languages i. chapter
History of LISP, pages 173–185. ACM, New York, NY, USA,
1981. ISBN 0-12-745040-8.

[35] M. McCool, S. Du, T. Tiberiu, P. Bryan, and C. K. Moule.
Shader algebra. ACM Transactions on Graphics, pages 787–
795, 2004.

[36] R. Membarth, P. Slusallek, M. Köster, R. Leißa, and S. Hack.
High-performance domain-specific languages for gpu comput-
ing. GPU Technology Conference (GTC), March 2014.

[37] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and
W. Eckert. HIPAcc: A domain-specific language and compiler
for image processing. IEEE Transactions on Parallel and
Distributed Systems, PP(99):1–14, 2015.

[38] T. Möller and B. Trumbore. Fast, minimum storage ray-
triangle intersection. J. Graph. Tools, 2(1):21–28, Oct. 1997.

[39] J.-H. Nah and D. Manocha. SATO: Surface Area Traversal
Order for Shadow Ray Tracing. Computer Graphics Forum,
2012.

[40] J.-H. Nah, H.-J. Kwon, D.-S. Kim, C.-H. Jeong, J. Park, T.-D.
Han, D. Manocha, and W.-C. Park. Raycore: A ray-tracing
hardware architecture for mobile devices. ACM Trans. Graph.,
33(5):162:1–162:15, Sept. 2014.

[41] C. Peters and R. Klein. Moment shadow mapping. In Pro-
ceedings of the 19th Symposium on Interactive 3D Graphics
and Games, i3D ’15, pages 7–14, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3392-4.

[42] S. Popov, J. Guenther, H.-P. Seidel, and P. Slusallek. Stackless
KD-Tree Traversal for High Performance GPU Ray Tracing.
Computer Graphics Forum, 2007.

[43] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In M. Aksit and S. Matsuoka, editors, Proceedings
of the 11th European Conference on Object-Oriented Pro-
gramming (ECOOP ’97), Lecture Notes in Computer Science,
pages 419–443. Springer-Verlag, June 1997.

[44] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: A language and compiler
for optimizing parallelism, locality, and recomputation in
image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 519–530, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6.

[45] T. Rompf and M. Odersky. Lightweight modular staging: A
pragmatic approach to runtime code generation and compiled
dsls. In Proceedings of the Ninth International Conference
on Generative Programming and Component Engineering,
GPCE ’10, pages 127–136, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0154-1.

[46] J. Schmittler, I. Wald, and P. Slusallek. Saarcor: A hardware
architecture for ray tracing. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS ’02, pages 27–36, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[47] T. W. Sederberg and T. Nishita. Curve Intersection using
Bezier Clipping. Computer-Aided Design, 22(9):538–549,
1990.

[48] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee:
A many-core x86 architecture for visual computing. In ACM
SIGGRAPH 2008 Papers, SIGGRAPH ’08, pages 18:1–18:15,
New York, NY, USA, 2008. ACM.

[49] K. Selgrad, A. Lier, M. Wittmann, D. Lohmann, and M. Stam-
minger. Defmacro for C: Lightweight, ad hoc code generation.
In Proceedings of ELS 2014 7rd European Lisp Symposium,
pages 80–87, 2014.

[50] N. Siegmund, S. Kolesnikov, C. Kastner, S. Apel, D. Batory,
M. Rosenmuller, and G. Saake. Predicting performance via
automated feature-interaction detection. In Proceedings of
the 34nd International Conference on Software Engineering
(ICSE ’12), pages 167–177, Washington, DC, USA, June 2012.
IEEE Computer Society Press.

[51] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner,
S. Apel, and G. Saake. SPL Conqueror: Toward optimiza-
tion of non-functional properties in software product lines.
Software Quality Journal, 20(3-4):487–517, 2012.

[52] P. Slusallek and I. Georgiev. Rtfact: Generic concepts for
flexible and high performance ray tracing. In R. J. Trew, edi-
tor, Proceedings of the IEEE / EG Symposium on Interactive
Ray Tracing 2008, pages 115–122, RT08 Reception Warehouse
Grill 4499 Admiralty Way Marina del Rey, CA 90292, 2008.
IEEE Computer Society, Eurographics Association, IEEE.

[53] M. Stich, H. Friedrich, and A. Dietrich. Spatial splits
in bounding volume hierarchies. In Proceedings of the
Conference on High Performance Graphics 2009, HPG ’09,
pages 7–13, New York, NY, USA, 2009. ACM.

[54] W. Taha. A gentle introduction to multi-stage programming.
In Domain-specific Program Generation, LNCS, pages 30–50.
Springer-Verlag, 2004.

[55] T. Veldhuizen. Template metaprograms. C++ Report, May
1995.

[56] C. Wächter and A. Keller. Instant ray tracing: The bounding
interval hierarchy. In Proceedings of the 17th Eurograph-
ics Conference on Rendering Techniques, EGSR ’06, pages
139–149, Aire-la-Ville, Switzerland, Switzerland, 2006. Euro-
graphics Association. ISBN 3-905673-35-5.

[57] I. Wald and V. Havran. On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of
IEEE Symposium on Interactive Ray Tracing 2006, pages
61–69, Sept. 2006.

[58] I. Wald and P. Slusallek. State of the art in interactive ray
tracing. State of the Art Reports, EUROGRAPHICS, 2001:
21–42, 2001.

[59] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive
rendering with coherent ray tracing. In Computer Graphics
Forum, pages 153–164, 2001.

[60] I. Wald, C. Benthin, and S. Boulos. Getting rid of packets -
efficient simd single-ray traversal using multi-branching bvhs,
2008.

[61] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst.
Embree: A kernel framework for efficient cpu ray tracing.
ACM Trans. Graph., 33(4):143:1–143:8, July 2014.


