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Abstract
In this paper, we introduce a novel technique for pre-filtering multi-layer shadow maps. The occluders in the scene are stored
as variable-length lists of fragments for each texel. We show how this representation can be filtered by progressively merging
these lists. In contrast to previous pre-filtering techniques, our method better captures the distribution of depth values, resulting
in a much higher shadow quality for overlapping occluders and occluders with different depths. The pre-filtered maps are
generated and evaluated directly on the GPU, and provide efficient queries for shadow tests with arbitrary filter sizes. Accurate
soft shadows are rendered in real-time even for complex scenes and difficult setups. Our results demonstrate that our pre-filtered
maps are general and particularly scalable.
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1. Introduction

The realism of interactively rendered scenes has seen great improve-
ments over the last years and decades. Nevertheless, even problems
at its core, such as shadow computation, remain challenging. In
interactive and real-time applications, shadow mapping [Wil78] is
the dominant approach, and numerous extensions thereof have been
presented, in particular for soft shadows and, more recently, shadow
map filtering, e.g. [DL06, AMB*07, SFY13].

Filtering shadow maps is challenging, because not the shadow
map depth values are to be filtered, but rather the binary result
of the depth comparisons. Since a fragment’s depth value for the
shadow test is not known in advance, it has been proposed to store
information about the distribution of depth values instead [DL06],
[AMB*07]. This distribution information can then be filtered and
used to approximate filtered depth comparisons. These approaches
can be extended to render soft shadows by adapting the filter size to
an estimated occluder distance [ADM*08, SFY13]; however, they
often suffer from light bleeding.

In this paper, we present an alternative, more direct pre-filtering
technique based on multi-layer shadow maps [XTP07], which offers

several benefits for rendering soft shadows with varying penumbra
sizes, as shown in Figure 1. Our shadow map filtering technique
can, naturally, be used for shadow anti-aliasing by including the
current pixel’s footprint size into the filter size calculation. How-
ever, in this paper we focus on using filtering for rendering soft
shadows.

In our shadow map, we store a variable-length list of fragments
with depth and opacity for every texel. The key observation is that
we can filter (and thus MIP-map) these shadow maps by merg-
ing fragment lists of neighbouring texels. During the merge, frag-
ments in an ε-depth interval are combined to larger fragments,
where partial coverage within this range translates to reduced opac-
ity. Our approach enables efficient soft shadowing and handles
opaque and semi-transparent occluders in a unified manner (Fig-
ure 1, left). By maintaining multiple layers in the shadow map, we
can handle difficult shadow configurations (see Figure 1) that can-
not be captured by methods using a single layer only. We demon-
strate that our approach is significantly more flexible and accu-
rate than previous work and enables trade-offs between quality and
performance.
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Figure 1: Our novel filtering technique for shadow maps enables soft shadow rendering in real-time and handles complex scenes efficiently
and accurately. It unifies the computation of soft shadows from opaque and semi-transparent surfaces (left) and also handles complicated
geometric configurations, e.g. distant and close occluders (centre left, 117 fps). Our method yields renderings close to the reference solution
(centre right, Optix, 2.1 s). Previous methods for soft shadow computation or filtering often fail in such cases. Note how, for example
exponential soft shadow mapping (right, 169 fps) does not capture the sharp shadows of the lantern.

In summary, our contributions are:

� A novel approach to shadow map filtering.
� A robust, real-time, soft shadow mapping technique.
� Unified handling of opaque and semi-transparent occluders in

soft shadow computation.

2. Previous Work

The importance of the visual cue of shadows in computer graphics
has led to an enormous body of research. In interactive applications,
shadow volumes [Cro77] and even more shadow mapping [Wil78]
are the dominant approaches, while ray-traced shadows, previously
only used in offline rendering, have started to become an alternative
option. Two recent books [ESAW11, WP12] provide a comprehen-
sive summary of this topic. Consequently, our presentation of prior
work focuses on approaches closely related to our paper, in par-
ticular filtering methods for shadow map lookups and multi-layer
shadow maps.

Shadow map filtering. Shadow maps cannot be filtered in the same
way as colour textures, as the binary result of the depth comparison,
rather than the depth values, must be filtered (percentage closer
filtering [RSC87]). Since the depth of a fragment for the comparison
is not known in advance, simple pre-filtering and MIP-mapping
as with colour textures is not possible. Instead, the filtering must
happen at the time of the shadow lookup, which is very costly
for large filter sizes. Fernando [Fer05] approximates soft shadows
by determining an average occluder depth from blocking texels
and adapting the filter size (Percentage Closer Soft Shadows). The
search for blockers is the most taxing part of this algorithm.

Soler and Sillion [SS98] solve the filtering problem by gener-
ating blocker images and filtering them. The approach makes very
restricting assumptions mainly because it relies on decomposing the
scene into blocking layers. Eisemann and Décoret [ED08] lift this
restriction and improve blending between layers.

Variance Shadow Maps [DL06] store the mean of depth values
and their mean squared. These values can be pre-filtered, resulting in
rough information about the depth distribution within larger shadow

map regions. Filtered shadow map lookups are possible by assuming
a normal distribution of the depth values and applying Chebyshev’s
inequality. The normal distribution assumption is, in general, not
valid for larger filter regions; thus, the method is mainly applied for
shadow anti-aliasing and not for soft shadows.

Convolution shadow maps (CSMs) [AMB*07] approximate vis-
ibility functions, which replace the standard shadow test with a
weighted summation of basis terms. This allows filtering and blur-
ring a shadow map. Exponential shadow maps (ESMs) [AMS*08]
use exponential basis functions to achieve better results more com-
pactly. Filter sizes can also be varied depending on occluder depth
to render plausible soft shadows [ADM*08, SFY13].

In general, the above pre-filtering techniques become problematic
if shadows from multiple occluders overlap, because the resulting
depth value distribution is difficult to capture. Figure 1 shows typ-
ical problems due to complex geometric configurations. Because
our method explicitly stores multiple layers, we can represent and
handle such occluders more robustly and generate more accurate
soft shadows.

Multi-layer shadow maps. A problem with many soft shadow
methods is that shadow maps only store the front-most depth
layer, and thus, relevant information for soft shadows becomes lost.
Wyman and Hansen [WH03] solve this issue by generating only
an outer penumbra, resulting in overestimated and sometimes im-
plausible shadows. By storing multiple depth layers, high-quality
soft shadows can be achieved. Agrawala et al. [ARHM00] cast rays
through such a representation to generate shadows, however, for
offline rendering. Layered variance shadow maps [LM08] reduce
the variance in depth distributions by storing multiple layers.

Chan and Durand [CD03] generate soft shadows by adding semi-
transparent ‘smoothies’ (often called shadow fins) to occluders’
silhouettes. However, this method can only generate outer penumbra
and thus overestimates the umbra.

Shadow maps with multiple layers can also be used to render
shadows of transparent occluders. Multi-layer transparent shadow
maps [XTP07] store a list of fragment depth and transparency val-
ues and directly enable computing the total occlusion at a given
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depth. While these lists have been created in software, per-pixel
linked lists [YHGT10] can be used on modern graphics hardware
and have been used for the stochastic rendering of transparent shad-
ows [ME11].

Deep shadow maps. Deep Shadow Maps [LV00], and their mod-
ern variants [KN01, YK08, SVLL10], are used to render shadows by
out-scattering and absorbing media such as smoke. Instead of stor-
ing individual fragments, they sample and encode the monotonous
transmittance function along a ray, which can also be computed
from highly-detailed geometry such as hair, fur or foliage. While
transmittance functions can be filtered, their typical encoding is not
practical for computing shadows from surfaces. Variants of deep
shadow maps are Opacity Shadow Maps [KN01] and Deep Opacity
Maps [YK08], which store attenuation using layers of transparent
shadow maps with uniformly distributed depth values.

Shadow map backprojection. Another prominent class of soft
shadow approaches is backprojection [GBP06], where occluding
shadow map texels are found and projected back to the rectangu-
lar light source to approximate their induced occlusion. As these
operations become costly for large penumbrae, multi-resolution ap-
proaches are required to achieve real-time frame rates. We refer
to the aforementioned books which cover the many variants and
techniques in great detail. Shadow map backprojection is not di-
rectly applicable to multi-layer shadow maps, because no overlap
test of the backprojected texels is performed. Yet, further layers
contain important information for soft shadows. Schwarz and Stam-
minger [SS07] propose an efficient overlap test based on bitmasks
sampling the light source, whereas Bavoil et al. [BCS08] implicitly
compute overlaps by sampling multiple layers in parallel.

3. Observations and Motivation

The key component to soft shadow mapping approaches is effi-
ciently determining occluders for a shading point. These occluders
reside within the sample frustum: the pyramid with the area light
source as its base and the surface sample to be shaded at the tip. The
individual approaches then differ in how they compute the actual
shadowing, which can be done using reprojection [GBP06] (which
requires tracking the actual coverage of the area light), or combin-
ing the occlusion using multiplication or addition [WP12] (which
can under- or overestimate shadowing). Our method is based on
the following observation: Consider the simple configuration of an
area light source, a receiver and an occluder casting a soft shadow
(Figure 2, left). Depending on their relative size and distance, we
can easily estimate the size of the umbra and penumbra (the umbra
can also vanish completely). The shadow on the receiver is a filtered
version of the occluder, whereas the penumbra size is equivalent to
the filter size. If we now replace the occluder with a semitransparent
version using smoothly increasing transparency at the boundaries,
as shown in Figure 2 (right), this filtered occluder generates the same
shadow if lit by a point light. Soler and Sillion [SS98] followed the
same observation; however, they filter only images, while we filter
the actual geometry instead.

In Figure 2, we can also see that the filter size is not constant, but
rather depends on the relative position of the occluder between the

Figure 2: Umbra and penumbra of an area light source (left). The
same shadow can be obtained using an unsharp occluder and a
point light source (right).

point to shade and the light source. We thus need a way to generate
and query filtered versions of the geometry at arbitrary filter sizes.

To facilitate all of this, our method uses a multi-layer shadow
map which stores the scene as a collection of lists with opaque and
semi-transparent fragments. First, we show that it is possible to pre-
filter such maps and even generate a MIP-map representation with
varying filter size. Next, we show how the resulting data structure
is used to efficiently generate soft shadows.

4. Filtering Multi-Layer Shadow Maps

Our method relies on a pre-filtered representation of the scene geom-
etry that is obtained by filtering our base-level multi-layer shadow
map. In the following, we show how the base level is obtained and
describe the filtering process.

4.1. Multi-layer shadow map generation

The base level of our extended shadow map is essentially a multi-
layer shadow map [XTP07]. To obtain it, we rasterize the scene
from the view of the light source and store the depth and opacity
of all fragments. Note that for closed geometry, storing back-facing
fragments suffices. The per-texel fragments can either be stored
in an array or a linked list (see Section 8) and are then sorted by
distance to the light.

This information can naturally be used directly to render hard
shadows from semi-transparent and opaque surfaces. To this end, a
fragment list would be traversed up to the query depth position and
the found opacities accumulated. In this case, all fragments after the
first opaque one along a ray can be omitted. However, in contrast to
hard shadows, these fragments are required to compute soft shadows
and are therefore kept by our method.

In order to prevent the lists from becoming excessively long and
to keep the sorting work low, we optionally join fragments of similar
depth values and replace them with one fragment of accumulated
opacity (see below).

4.2. Downsampling and filtering

After generating the base level, every texel p in the shadow
map stores a list of fragments Fp with depth and opacity: Fp =
{(dp,0, αp,0), ..., (dp,n−1, αp,n−1)}. If coloured transparent shadows
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while fragments left
davg = 0, αi = 0
do

i = list_with_closest_fragment();
(d, α) = Fi.pop();
davg += d
αi = accumulate(αi,α) // see Sect. 4.2

while fragments within ε-interval
davg = davg / fragments_merged
α = (α0+α1+α2+α3) / 4
output(davg, α)

Figure 3: Pseudo-code for merging 2 × 2 fragment lists.

Figure 4: Merging fragment lists. The three green fragments are
merged into a larger one with reduced opacity, the four red ones
into a single opaque one. Note that the red and green fragments are
not considered close enough to be merged.

are desired, α must be an RGB-triplet; for soft shadows, a single
channel is sufficient.

MIP-mapping. The key to our method is filtering lists of texels,
which can be achieved in a manner similar to MIP-mapping, where
we average 2 × 2 texel lists.

To merge four fragment lists F1 . . . F4 we use a procedure simi-
lar to merge sort’s combination step, i.e. we assume that fragments
in Fi are pre-sorted for depth. Pseudo-code is given in Figure 3,
and Figure 4 illustrates the process for a simple example. We gen-
erate the merged list by first taking the respective closest frag-
ment out of F1 . . . F4 ((d, α) = Fi.pop), and then gathering all
fragments within the ε-interval [d; d + ε]. The depths of the frag-
ments are simply averaged. α-Values of fragments from the same
list Fi are accumulated into separate αi using a general function
accumulate (see below). In the end, the αi of the different lists
are simply averaged, since they do not overlap in image space.

When constructing the MIP-map pyramid, we relax the threshold
ε for every subsequent level (see Section 6). This results in fragments
being merged that were considered too far apart at previous levels
of higher resolution.

Figure 5: Different levels of our shadow map, projected back into
3D space, and the shadow generated by these (including bilinear in-
terpolation). Note the increasing penumbra size and the transparent
fragments at the silhouette.

Figure 6: Pre-filtered shadow maps. Levels four to six are shown,
corresponding to filter sizes of 16 × 16 up to 64 × 64. Top row:
MIP-maps; bottom row: Y-maps.

Filtered shadow lookup. An illustration of the different levels
stored in a MIP-mapped shadow map is shown in Figure 5. The filter
sizes are associated with MIP-map levels and increase by a factor
of 2 with every level. We can now use each of these new levels
to generate filtered shadows with an increasing, albeit constant per
level, penumbra size.

In standard shadow mapping, the depth of a shading point is tested
against the depth stored in the respective texel of the shadow map.
With our multi-layer shadow map, this binary test is replaced with
a traversal of the texel’s fragment list, thereby accumulating the
opacities of the fragments between the light and the shading point,
which naturally handles semi-transparent occluders.

This shadow map lookup should, of course, be interpolated to
obtain smooth results. In practice, this means we traverse the four
lists closest to the shading point and bilinearly interpolate the result.
The top row of Figure 6 shows the results using different filter
levels. We can even approximate continuously varying filter sizes
by interpolating between MIP-map levels.

Accumulation. We accumulate opacities at various stages of our
algorithm. When merging fragments from different lists, opacity
addition is the best choice, as we know that fragments do not overlap.
When merging fragments within a list and for the accumulation of
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Figure 7: Generation of a Y-map: First, 2 × 2 neighbouring texels
are merged in each step (MIP-map). At a given resolution (here at
4 texels), we switch to a stack. From then on, pairs with increasing
distance are merged. Due to boundary handling, the first stack image
becomes one texel wider. The right image shows the resulting filter
sizes.

transparencies during the shadow lookup, three different modes
can be found in previous work: addition (assuming non-overlapping
occluders), multiplication (for transparent occluders) or maximation
(for overlapping occluders) [WP12]. We discuss these choices in
Section 6 where we analyse our soft shadow method.

Generating Y-maps. We note that the decrease in resolution of
the MIP-map levels impairs the visual quality. For large filter sizes,
the resolution of the MIP-map levels becomes lower, leading to
artefacts that accentuate the underlying texel structure, see Figure 6
(top row).

The reason for these artefacts is that, in contrast to colour texture
MIP-mapping, our MIP-map is significantly magnified for large
filter sizes. Note that we do not use MIP-maps to avoid aliasing from
minification, but instead to efficiently compute and store versions
of the filtered scene.

To avoid these artefacts, we need to reduce magnification for the
coarse levels. To this end, we build a hierarchy corresponding to a
filter stack instead of a pyramid starting from some level, e.g. from
128 × 128. This means that consecutive images are still filtered with
progressively larger filters, however, without further halving their
resolution. Similar data structures have been proposed previously
under the name Y-map [SS08]. Figure 6 compares the results with
standard MIP-mapping.

This computation of such a Y-map is depicted in Figure 7. In the
first levels, 2 × 2 texels are merged, resulting in a halved resolution
at each step. At some given resolution, we switch to a filter stack.
As shown in Figure 7, the filter kernels start overlapping, in contrast
to the MIP-map part. Nevertheless, each texel can be computed by
merging exactly 2 × 2 texels from the previous level. Note that the
first stack-filtered level is one texel wider and offset by half a texel
(see Figure 7, right). For all following levels, the size then remains
constant, as does the half-texel offset.

Figure 8: Left: Computing the filter size required for an occluder
at depth z. Right: Projecting this filter size into shadow map space.

5. Filtered Multi-Layer Soft Shadows

With the different levels of our filtered shadow map, we can generate
softened shadows with different penumbra sizes. However, for real
soft shadows, the penumbra size varies according to the position of
the occluder. A particularly difficult constellation is when penum-
brae of different sizes overlap, as shown in Figure 1, a case that is
not handled properly by many real-time approaches.

In this section, we describe how we can combine layers with vary-
ing filter sizes to achieve accurate, real soft shadows with varying
penumbra size, even for the difficult overlapping case.

5.1. Soft shadow lookup

Consider the geometric configuration shown in Figure 8. An area
light of size l at depth z = 0 illuminates a receiver at depth zshade. If
we consider an occluder at depth z, then we can see how large the re-
gion is where surfaces can potentially occlude the area light source.
The size of this region defines the required filter size f (in world
space) for computing soft shadows using pre-filtered geometry:

f (z) = l

(
1 − z

zshade

)
.

Projecting this filter size f into shadow map space (Figure 8, right)
results in

fs(z) = f (z)
znear

z
= lznear

(
1

z
− 1

zshade

)
.

Using this, when looking at a shadow map fragment at depth z, we
can determine which filter size and thus which resolution level of
the pre-filtered map should be applied.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



6 K. Selgrad et al. / Filtering Multilayer Shadow Maps for Accurate Soft Shadows

float shadow(vec2 uv, float z)
float opacity = 0
foreach resolution level i
float (z_s, z_e) = depth_range(i, z)
foreach fragment frag

in list from z_s to z_e at uv
opacity = accumulate(opacity,

frag.opacity)
return opacity

Figure 9: Pseudo-code for soft shadow lookup without interpola-
tion.

Figure 10: With bilinear interpolation only, the levels of our hierar-
chy become visible. Trilinear interpolation of fragment lists ensures
smooth level transitions at negligible cost.

Straightforward manipulation of fs(z) yields

z(fs) = lzszn

fszs + lzn

for which the filter size is the input. With this we can determine at
which depth values a given filter size is appropriate for each shad-
ing point. This leads to an efficient traversal method where, for each
shading point, we iterate over all resolution levels of our hierar-
chy and determine the depth range [zs, ze], e.g. [z(wi), z(wi+1)], for
which each level fits the filter size wi . Within this range, we accu-
mulate the opacity of the stored fragments. Figure 9 details this step
as pseudo-code. As mentioned above, we can add bilinear filtering
by interpolating the result from the shadow test with the four closest
texel lists.

5.2. Trilinear interpolation

In the pseudo-code of Figure 9, for each resolution i, we only use
fragments from a depth interval [zs, ze]. For different resolution lev-
els, depth intervals do not overlap, i.e. for an occluder at depth z,
we use exactly one shadow map level, resulting in discontinuous
switches of penumbra sizes (Figure 10, left). To get a smooth inter-
polation of penumbrae, we use the following approach: We extend
the depth intervals such that fragments are gathered from the two
best-fitting resolution levels. The gathered fragments are weighted
depending on their z-value by a hat-function over the depth interval,
resulting in smooth blending between the resolutions (Figure 10,
right). Note that, in practice, we cannot guarantee that the blend-
ing weights add to one, since the depth values may vary slightly

Figure 11: A fence with fine detail from alpha maps casting shad-
ows (rendered using our method) with a close and distant light
source.

between different levels. However, we have not noticed visible arte-
facts from this; in fact, the gain in visual quality is considerable and
the scheme’s impact on performance is negligible.

Note that this interpolation scheme furthermore facilitates shadow
anti-aliasing by choosing the starting level and weight accordingly.

5.3. Alpha mapping

Our method adapts nicely to transparent occluders, as illustrated
in Figure 1, which shows a transparent occluder casting coloured
shadows. This also encompasses transparency from alpha maps
and especially from MIP-mapped alpha textures, as exemplified in
Figure 11.

6. Parameters

Our soft shadow algorithm has a set of intuitive parameters which
control the trade-off between visual quality and performance. In
this section, we focus on these parameters’ impact on visual quality,
while performance will be considered in Section 8.

Depth layers. We can prune the fragment lists by using only the
first n depth layers of the base shadow map (filtered maps can have
more layers). With n = 1, our method produces soft shadows com-
parable to exponential soft shadow mapping (ESSM) [SFY13] (see
Figure 12, left). More complex constellations as shown in
Figures 1, 12 and 13 require a larger n. Note that already with
n = 2, the shadow in Figures 12 and 13 looks plausible.

Fragment lists. Recall that we combine fragment lists during fil-
tering, which then become longer. Yet, we also reduce the number
of fragments by merging those whose depth values are closer than
a threshold ε. In our examples, we used ε(w) = 2w, where w is
the size of a fragment at the corresponding depth. This implies
an increase in the threshold by a factor of 2 at each level. Note
that as long as additive accumulation is used (discussion in the
following section), only very large values for ε result in artefacts
(see Figure 13, centre right, with ε = 130w). For additive accumu-
lation, this parameter introduces artefacts where distant geometry

c© 2014 The Authors
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Figure 12: Shadows of a high-polygon tree. Exponential soft shadow mapping (ESSM) [SFY13] (left) compared to our method with only 1
(centre left), 2 (centre right) and 16 fragments (right) stored in the base layer of the multi-layer shadow map.

Figure 13: Different parameter settings with impact on the image quality. From left to right: reference using conservative settings; only a
single layer on the base level of our shadow map; two layers on the base level; large value for ε (here 130w); maximum filter level too
restricted.

Figure 14: An occluder spanning multiple levels of our hierarchy. Additive shadow accumulation (left) yields smooth results, whereas careless
use of ε with multiplicative accumulation (centre left) may break occluders apart. Note that ESSM [SFY13] (centre right) is missing contact
shadows which our approach captures nicely. The (colour coded) levels and the interpolation weights employed during shadow computation
with our method are shown in the rightmost panel.

is merged (starting at ε = 70w in Figure 13). However, for multi-
plicative accumulation, occluders can break apart (see Figure 14).

Accumulation. As the above example shows, an important point to
consider is the accumulation of opacities. Modes found in previous
work are addition (assuming non-overlapping occluders), multipli-
cation (for transparent occluders) or maximation (for overlapping
occluders) [WP12].

While multiplicative accumulation may result in light leaks (see
Figure 14, centre left), this was usually not visible in our test scenes
(see Figures 12 and 17 in Section 8). It also naturally prevents
shadow overestimation (see Figure 15, centre) which may result
from additive accumulation (Figure 15, left). Note that the presented

Figure 15: Additive accumulation (left) is prone to overestimating
shadows; multiplicative accumulation (centre) yields correct re-
sults. Note that this is a simple yet challenging configuration which
also many state-of-the-art algorithms, e.g. ESSM (right), do not
handle well.

c© 2014 The Authors
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Table 1: Timings (in ms) for the Sponza scene shown in Figure 1 (centre
left), rendered at 1280 × 720 on a GeForce Titan (summary in fps). The table
shows the effect of the different parameters discussed in Section 6. Values
influenced by a parameter change are marked in boldface.

Parameter settings

default ε=10w 5 levels sub all

Scene rendering 1.46 1.46 1.46 1.46 1.46
Frag counting 0.83 0.83 0.83 0.83 0.83
Scan 0.27 0.27 0.27 0.27 0.27
Frag collecting 1.29 1.29 1.29 1.29 1.29
Frag sorting 0.63 0.63 0.63 0.63 0.63
Filtering 3.35 2.10 2.31 3.35 1.81
Soft shadows 7.93 6.24 5.59 3.04 2.23
Frames s−1 63.45 78.00 80.77 91.99 117.37

configurations are not managed well by state-of-the-art soft shadow
mapping approaches, see Figures 14 (centre right) and 15 (right).

Maximum MIP-map level. A very intuitive parameter is to impose
a maximum MIP-map level. This directly affects the maximum
filter size and thus the maximum penumbra size, which translates to
filtering and traversing fewer levels, leading to better performance.
Figure 13 (right) shows an example using this parameter. The fact
that the penumbra size is too small is only clear when compared to
the reference (left).

7. Implementation

We implemented our method using OpenGL 4.3 with compute
shaders as we make use of scattered writes and atomic counters
to build the multi-layer shadow map.

We experimented with per-pixel linked lists and an array-based
implementation to gather fragments. In the latter case, the lists are
built by first counting the number of list elements, followed by a
scanning pass [SHZO07], and finally collecting and tightly pack-
ing in a second render pass. This overhead easily amortizes as the
filtering and shadow computation greatly benefit from the simpler
data structure; all our timings are reported for this implementation
choice. Furthermore, arrays provide the additional benefit of being
able to use binary search (e.g. when searching the start of an inter-
val for a given depth value), which leads to significant performance
improvements.

8. Results

We evaluated our method with various test scenes on current gen-
eration GPUs. If not stated otherwise, we use a base layer of
1024 × 1024 for our shadow map. Table 1 lists timings measured
for the Sponza scene as shown in Figure 1 (centre left), rendered at
720p using our MIP-mapped multi-layer shadow maps. The first col-
umn is measured with very conservative parameter settings (listed
as ‘default’): ε = 2w (in normalized depth), using all 11 levels of
our hierarchy. The subsequent columns show parameter changes

Table 2: Timings (in ms) for the ‘Streets of Asia’ scene as shown in Fig-
ure 16, rendered with our soft shadow method (MIP-mapped) at 720p on a
GeForce Titan. The different components of our algorithm are shown along
with the effect of the parameters presented in Section 6. As before, values
influenced by a parameter change are marked in boldface.

Parameter settings

Default ε=10w Five levels Sub All

Scene rendering 1.78 1.78 1.78 1.78 1.78
Frag counting 0.98 0.98 0.98 0.98 0.98
Scan 0.27 0.27 0.27 0.27 0.27
Frag collecting 1.85 1.85 1.85 1.85 1.85
Frag sorting 0.60 0.60 0.60 0.60 0.60
Filtering 5.40 1.87 3.78 5.40 1.66
Soft shadows 7.71 5.17 5.81 2.54 2.16
Frames s−1 53.7 79.7 68.8 73.2 104.9

which did not result in reduced visual quality to illustrate their im-
pact on performance. The first column changes the ε threshold to
10w, resulting in much fewer individual fragments, especially at
levels higher-up. This affects filtering and shadowing times as both
stages are dependent on the lists’ length. In the second column,
only the five finest layers of our hierarchy are generated and used
for shadow computation. This, too, affects filtering and shadowing
performance, because the outer loop over the levels can be termi-
nated early in both cases. The column ‘sub’ denotes an image space
sub-sampling of the soft shadow at every other pixel and subse-
quent interpolation. By this, we can trade a minor decrease in image
quality for a significant reduction in rendering time. Note that the
application of more elaborate sub-sampling schemes, e.g. [GBP07],
might reduce rendering time further. However, as the assumption of
low-frequency penumbrae is not generally applicable to our layered
approach, we refrained from more aggressive sub-sampling. The
last column shows the performance attained for all three options
combined. Table 1 also lists the timings for the individual steps of
our method: standard rendering of the scene, fragment counting and
scanning provide indexing for tightly packed fragment arrays, which
are then filled in with the fragment collection pass. Fragments are
then sorted before they can be filtered. Table 2 shows the same eval-
uation for the more complex ‘Streets of Asia’ scene consisting of
400 000 triangles with much higher depth complexity. Table 3 com-
pares the rendering performance at different resolutions and also
compares using Y-maps to using MIP-maps. On the GeForce Titan,
the filtering time of a 1024 × 1024 shadow map is increased by 22%
and shadow lookup by 9% when switching to a stack starting from
128 × 128 in the Sponza scene.

We compare our results to a ray tracing reference using Op-
tix [PBD*10] where we stochastically sample 128 shadow rays for
each image pixel. As Figures 1 and 17 show, our results are very
close to this reference. Because we interpolate between two levels
of the hierarchy to approximate the desired filter size shadows can
become slightly softer than the reference. Furthermore, we compare
our method to a recent soft shadow mapping approach which, while
being faster to compute, does not capture complicated scene config-
urations as well as our approach (see Figures 1 and 12). Table 4 lists

c© 2014 The Authors
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Table 3: This tables details how MIP-maps and Y-maps compare in terms
of rendering performance for the Sponza and Streets of Asia scenes shown
in Figures 1 and 16, respectively. The timings include the generation of our
extended shadow map every frame; the stack part of the Y-map starts at
128 × 128 resolution.

Frames s−1

Resolution Filtering Sponza Streets of Asia

1280 × 720 MIP-map 117.4 104.9
Y-map (128) 101.2 86.4

1920 × 1080 MIP-map 90.2 84.2
Y-map (128) 80.8 77.9

Table 4: Performance evaluation of our method as compared to ESSM and
our ray tracing reference for the scenes shown in Figures 1, 12 and 16. All
measurements were conducted on a Geforce Titan at 720p.

Sponza Tree Strees of Asia

ESSM 5.2 ms 5.5 ms 6.7 ms
Our 8.5 ms 6.1 ms 9.5 ms
Our (2k) 45 ms 28 ms 38 ms
Our (512) 5.7 ms 4.4 ms 8.5 ms
Ray tracing 2.1 s 1.8 s 1.6 s

Figure 16: Streets of Asia: A more game-like scene. Detailed tim-
ings for the different steps of our algorithm are shown in Table 2,
timings for Y-Maps versus MIP-maps are presented in Table 3.

the corresponding timings, including our method when run with a
higher or lower resolution base level shadow map. High-resolution
base maps result in a significant increase in computation time due to
expensive filtering of the base level. The lower resolution base maps
provide further performance enhancement, yet often lead to notice-
able artefacts, especially for the highly detailed tree scene shown
in Figure 17. As can be seen in Figure 18, the visual difference at
coarse levels of our hierarchy is minor. A simple solution is thus to
replace the first filter step(s) with simple sub-sampling instead of
merging, i.e. to simply reference base level lists at the next coarser
level.

Figure 17: Our results (left) compare nicely to ray-traced shadows
(right).

Figure 18: For very thin geometry, the difference between 1k (left)
and 2k shadow maps (centre) is visible for contact shadows. Using
sub-sampling during filtering (right) computation time is reduced
while maintaining the higher resolution in important regions. The
fence shown is high-poly and not alpha-mapped.

Discussion of parameters. Lowering the maximum filter size re-
quires fewer resolution levels and thus affects the performance of
pre-filtering and shadow lookups. This is applicable if an upper limit
on the penumbra size is acceptable. In our test scenes (Figures 1
and 16), the filtering performance increases by 1.44× and shadow
lookup performance by 1.3× to 1.4× without any effect on visual
quality.

The most forgiving parameter, according to our experiments, is
the ε-threshold. It directly influences the length of the (merged)
fragment lists and greatly affects filtering and shadow lookup per-
formance. Tables 1 and 2 report filtering speedups of 1.6× to 2.8×,
and shadow lookup speed increases of 1.27× to 1.49×, without
noticeable impact on visual quality.

Failure cases. Figure 13 shows examples of failures due to aggres-
sive parameter settings. It compares our results using conservative
parameters sets (left) to using just one layer (centre left) and two

c© 2014 The Authors
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layers (centre) in our structure’s base level. As can be expected,
using just a single layer does not suffice to capture the scene con-
figuration. With just two layers (even when the objects on the wall
are aligned to overlap), the scene still looks plausible (see Figure 12
for a similar case). Figure 13 (centre right) shows an inappropriate
merging of occluders with a very large ε. Limiting the maximum
level used by our algorithm, i.e. the maximum filter size, is shown in
Figure 13 (right). Compared to the reference, the shadow is clearly
too hard, however, when viewed in isolation, it still looks plausible,
making this parameter a very handy tool for optimization.

9. Conclusion and Future Work

In this paper, we presented an efficient real-time approach to
soft shadow computation based on a novel filtering technique for
multi-layer shadow maps, which is more accurate than previous
approaches. It handles opaque and semi-transparent surfaces in a
unified manner. Our soft shadow computation yields results close
to ground truth, even in difficult geometric configurations where
previous methods fail. Additionally, our method is scalable and a
set of intuitive parameters can be used to trade shadow quality for
performance, as illustrated in Figure 13.

We believe that our method can be further improved, e.g. by bet-
ter optimizing the number of fragments stored per texel, improving
screen space interpolation, or optimizing the filter sizes and reso-
lution levels. Lastly, rendering anti-aliased shadows by generating
semi-transparent fragments at silhouette edges also reflects potential
for future work.
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