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ABSTRACT

We describe the design and implementation of CGen, a C
code generator with support for Common Lisp-style macro
expansion. Our code generator supports the simple and effi-
cient management of variants, ad hoc code generation to
capture reoccurring patterns, composable abstractions as
well as the implementation of embedded domain specific
languages by using the Common Lisp macro system. We
demonstrate the applicability of our approach by numerous
examples from small scale convenience macros over embed-
ded languages to real-world applications in high-performance
computing.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—code gen-
eration; D.2.3 [Software Engineering]: Coding Tools and
Techniques—pretty printers; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—evolutionary prototyp-
ing

General Terms

Design, Languages, Experimentation, Management, Perfor-
mance

Keywords

Code Generation, Common Lisp, Configurability, Mainte-
nance, Macros, Meta Programming

1. INTRODUCTION

Code generation and its application in domain-specific
languages is a long-established method to help reduce the
amount of code to write, as well as to express solutions
much closer to the problem at hand. In Lisp the former
is provided by defmacro, while the latter is usually accom-
plished through its application. In this paper we present a
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formulation of C (and C-like languages in general) that is
amenable to transformation by the Lisp macro processor.

With this formulation we strive towards providing more el-
egant and flexible methods of code configuration and easing
investigation of different variants during evaluation (e.g. to
satisfy performance requirements) without additional costs
at run-time. The significance of this can be seen by the vast
amount of work on variant management [26, 30], code gener-
ation and domain-specific languages for heterogeneous sys-
tems (e.g. [21, 17]) and code optimization in general [23] in
the last years. It is, e.g., mandatory in performance critical
applications to reevaluate different versions of an algorithm
as required by advances in hardware and systems design (see
e.g. [9, 18]). We believe that those approaches to algorithm
evaluation will become ever more common in an increasing
number of computational disciplines. Our contribution is
the description and demonstration of a system that lever-
ages the well established Common Lisp macro system to the
benefit of the C family of languages. Additionally this ex-
tends to lowering the entry barrier for using meta code by
providing a system that is much more suited to ad hoc code
generation than current large-scale approaches.

In contrast to stand-alone domain-specific languages that
generate C code, such as Yacc [12], most general purpose
generative programming methods for C can be placed into
two categories: string-based approaches, and systems based
on completely parsed and type-checked syntax trees (ASTSs).
The systems of the former category (e.g. [5, 4]) tend to be
suitable for ad hoc code generation, and for simple cases
tackling combinatoric complexity (e.g. [9]), but lack layer-
ing capabilities (i.e. transforming generated code). Further-
more they suffer from using different languages in the same
file (a problem described by [18], too), and thereby encom-
pass problems including complicated scoping schemes. AST-
based systems, on the other hand, are very large systems
which are not suitable for ad hoc code generation. Even
though such systems are very powerful, they are mostly
suited for highly specialized tasks. Examples of such larger
scopes include product line parameterization [26] and DSLs
embedded into syntactically challenging languages [28, 21].

With respect to this classification our approach covers a
middle-ground between these two extremes. Our formula-
tion of C facilitates the use of Common Lisp macros and
thereby light-weight structural and layered meta program-
ming. Yet, we neither provide nor strive for a completely
analyzed syntax tree as this would introduce a much larger
gap between the actual language used and its meta code.



Based on our reformulation of C, and tight integration
into the Common Lisp system we present a framework that
is most suitable for describing domain-specific languages in
the C family. We therefore adopt the notion of our system
being a meta DSL.

This paper focuses on the basic characteristics of CGen,
our implementation of the approach described above. Sec-
tion 3 presents CGen’s syntax and shows simple macro ex-
amples to illustrate how input Lisp code is mapped to C
code. Section 4 discusses the merits and challenges of di-
rectly integrating the CGen language into a Common Lisp
system and shows various implementation details. A sys-
tematic presentation of more advanced applications with our
method is given in Section 5, focusing on how our code gen-
erator works on different levels of abstraction and in which
way they can be composed. Section 6 evaluates two rather
complete and relevant examples found in high performance
computing applications [3]. We analyze the abstractions
achieved and compare the results to hand-crafted code in
terms of variant management, extensibility and maintenance
overhead. Section 7 concludes our paper by reflecting our
results. Throughout this paper we provide numerous exam-
ples to illustrate our generator’s capabilities as well as the
style of programming it enables.

2. RELATED WORK

Since C is the de facto assembly language for higher level
abstractions and common ground in programming and since
generative programming [8] is as old as programming itself,
there is an enormous amount of previous work in code gener-
ation targetting C. We therefore limit our scope to describe
the context of our work and describe its relation to estab-
lished approaches.

Code generation in C is most frequently implemented us-
ing the C preprocessor (and template meta programming in
C++ [1]). These generators are most commonly used be-
cause they are ubiquitous and well known. They are, how-
ever, neither simple to use nor easily maintained [25, 8].

The traditional compiler tools, Yacc [12] and Lex [20],
generate C from a very high level of abstraction while still
allowing for embedding arbitrary C code fragments. Using
our framework such applications could be remodelled to be
embedded in C (similar to [7]), instead of the other way
around. For such specialized applications (and established
tools) this may, however, not be appropriate.

Our approach is more comparable to general purpose code
generators. As detailed in Section 1 we divide this area into
two categories: ad hoc string-based generators, very popu-
lar in dynamic languages (e.g. the Python based frameworks
Cog [4] and Mako [5]); and large-scale systems (e.g. Clang
[28], an extensible C++ parser based on LLVM[19]; Aspect-
C++ [26], an extension of C++ to support aspect-oriented
programming (AOP)'; XVCL [30], a language-agnostic XML-
based frame processor) which are most appropriate when
tackling large-scale problems. An approach that is concep-
tually similar to ours is “Selective Embedded JIT Special-
ization” [6] where C code is generated on the fly and in a
programmable fashion and Parenscript [24], an S-Expression
notation for JavaScript.

Regarding the entry barrier and our system’s applicabil-
ity to implement simple abstractions in a simple manner

!The origins of AOP are from the Lisp community, see [16].
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our system is close to string and scripting language-based
methods. Due to homoiconicity we do not, however, suffer
from problems arising because of mixed languages. Fur-
thermore our approach readily supports layering abstrac-
tions and modifying generated code to the extent of imple-
menting domain-specific languages in a manner only pos-
sible using large-scale systems. The key limitation of our
approach is that the macro processor does not know about
C types and cannot infer complicated type relations. Using
the CLOS [13] based representation of the AST generated
internally after macro expansion (see Section 4), any appli-
cation supported by large-scale systems becomes possible;
this is, however, not covered in this paper.

3. AN S-EXPRESSION SYNTAX FOR C

The key component facilitating our approach is a straight-
forward reformulation of C code in the form of S-Expressions.
The following two examples, taken from the classic K&R [14],
illustrate the basic syntax.

The first example, shown in Figure 1, is a simple line
counting program. Even though the syntax is completely
S-Expression-based, it still resembles C at a more detailed
level. Functions are introduced with their name first, fol-
lowed by a potentially empty list of parameters and (nota-
tionally inspired by the new C++11 [27] syntax) a return
type after the parameter list. Local variables are declared
by decl which is analogous to let.

1 (function main () -> int

2 (decl ((int c)

3 (int nl 0))

4 (while (!= (set c¢ (getchar)) EOF)
5 (if (== c #\newline)

6 ++nl))

7 (printf "%d\n" nl))

8 (return 0))

1 int main(void) {

2 int c;

3 int nl = 0;

4 while ((c = getchar()) != EOF) {
5 if (¢ == ’\mn’)

6 ++nl;

7 ¥

8 printf ("%d\n", nl);

9 return O;

o }

1

Figure 1: A simple line counting program, followed
by the C program generated from it.

1 (function strcat ((char p[]) (char ql[l)) -> void
2 (decl ((int i 0) (int j 0))

3 (while (!= p[il #\null)

4 i++)

5 (while (!= (set p[i++] ql[j++]1) #\null))))
1 void strcat(char p[]l, char q[l) {

2 int i = 0;

3 int j = 03

4 while (p[il != °\0’)

5 i++;

6 while ((pl[i++] = q[j++1) != °\0’);

7 %

8

Figure 2: Implementation of the standard library’s
strcat, followed by the generated code.



The resemblance of C is even more pronounced in the sec-
ond example presented in Figure 2, which shows an imple-
mentation of the standard strcat function. The use of ar-
rays, with possibly simple expressions embedded, is a short-
hand syntax that is converted into the more general (aref
<array> <index>) notation. This more elaborate notation
is required for complicated index computations and ready
to be analyzed in macro code.

To illustrate the application of simple macros we show how
to add a function definition syntax with the same ordering
as in C.

1 (defmacro function* (rt name params &body body)

2 ‘(function ,name ,params -> ,rt
3 ,@body))

With this the following two definitions are equivalent:

1 (function foo () -> int (return 0))
2 (function* int foo () (return 0))

As another example consider an implementation of swap
which exchanges two values and can be configured to use
an external variable for intermediate storage. This can be
implemented by generating a call to an appropriately sur-
rounded internal macro.

1 (defmacro swap (a b &key (tmp (gensym) tmp-set))
2 ‘(macrolet ((swap# (a b tmp)

3 ‘(set ,tmp ,a

4 sa ,b

5 ,b ,tmp)))

6 (lisp (if ,tmp-set

7 (cgen (swap# ,a ,b ,tmp))

8 (cgen (decl ((int ,tmp))

9 (swap# ,a ,b ,tmp)))))))

The lisp form is outlined in Section 4. The following ex-
amples illustrate the two use cases (input code left, corre-
sponding output code right).

1 (decl ((int x) int x;

2 (int y)) int y;

3 (swap x y)) int g209; // gensym
4 g209 = x;
5 X = y;

6 y = g209;
7

8 (decl ((int x) int x;

9 (int y) int y;

10 (int z)) int z;

11 (swap x y :tmp z)) zZ = X3

12 X =Y

13 y = z;

Note the use of a gensym for the name of the temporary vari-
able to avoid symbol clashes. More advanced applications
of the macro system are demonstrated in Section 5 and 6.

4. IMPLEMENTATION DETAILS

Our system is an embedded domain-specific language for
generating C code, tightly integrated into the Common Lisp
environment. The internal data structure is an AST which is
constructed by evaluating the primitive CGen forms. This
implies that arbitrary Lisp forms can be evaluated during
the AST’s construction; consider e.g. further syntactic en-
hancements implemented by cl-yacc [7]:

1 (function foo ((int a) (int b) (int c)) -> int
2 (return (yacc-parse (a + b * a / ¢))))

All CGen top level forms are compiled into a single AST
which is, in turn, processed to generate the desired C output.
The following listing shows the successive evaluation steps

of a simple arithmetic form which is converted into a single
branch of the enclosing AST.

(x (+ 1 2) x)
(x #<arith :op ’+ :1hs 1 :rhs 2>
#<name :name "x">)
#<arith :o0p ’*
:lhs #<arith :o0p ’+ :1lhs 1 :rhs 2>
:rhs #<name :name "x">>
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Naturally, the implementation of this evaluation scheme
must carefully handle ambiguous symbols (i.e. symbols used
for Lisp and CGen code), including arithmetic operations
as shown in the example above, as well as standard Com-
mon Lisp symbols such as function, return, etc. We chose
not to use awkward naming schemes and to default to the
CGen interpretation for the sake of convenience. If the Lisp
interpretation of an overloaded name is to be used, the cor-
responding form can be evaluated in a lisp form. Similarly
the cgen form can be used to change back to its original
context from inside a Lisp context. This scheme is imple-
mented using the package system. CGen initially uses the
cg-user package which does not include any of the standard
Common Lisp symbols but defines separate versions default-
ing to the CGen interpretation. Note that while ambiguous
names depend on the current context, unique symbols are
available in both contexts.

Considering the above example, we see that the symbol
x is converted into a node containing the string "x". While
Lisp systems usually up-case symbols as they are read, this
behavior would not be tolerated with C, especially when
the generated code is to interact with native C code. To
this end we set the reader to use :invert mode case conver-
sion (:preserve would not be desirable as this would require
using upper case symbol names for all of the standard sym-
bols in most Common Lisp implementations). This scheme
leaves the symbol names of CGen code in an inverted state
which can easily be compensated for by inverting the symbol
names again when they are printed out.

The AST itself is represented as a hierarchy of objects
for which certain methods, e.g. traversal and printing, are
defined. Naturally, this representation is well suited for ex-
tensions. To this end we implemented two different lan-
guages which we consider able to be classified as part of the
family of C languages. The first language is a notation for
CUDA [22], a language used for applying graphics process-
ing units (GPUs) to general purpose computing. Support
for CUDA was completed by adding a few node types, e.g.
to support the syntax for calling a GPU function from the
host side. The second extended C language is GLSL [15], a
language used to implement GPU shader code for computer
graphics applications. Supporting GLSL was a matter of
adding a few additional qualifiers to the declaration syn-
tax (to support handling uniform storage). These examples
show how easily our method can be used to provide code
for heterogeneous platforms, i.e. to support generating code
that can run on different hardware where different (C-like)
languages are used for program specification.

As noted previously, our system’s AST representation is
easily extensible to support any operation expected from
a compiler. Our focus is, however, the application of the
supported macro system and we therefore leave most of the
backend operation to the system’s C compiler. Since the
AST is only available after macro expansion compilation er-
rors are reported in terms of the expanded code.



S. APPLICATION

In this section we demonstrate how our generator can be
applied to a number of different problems. We chose to
show unrelated examples on different abstraction levels to
illustrate its broad spectrum.

5.1 Ad Hoc Code Generation

A key aspect of our method is the support for ad hoc code
generation, i.e. the implementation of localized abstractions
as they become apparent during programming.

A simple example of this would be unrolling certain loops
or collecting series of expressions. This can be accomplished
by the following macro (defcollector) which generates mac-
ros (unroll, collect) that take as parameters the name of
the variable to use for the current iteration counter, the
start and end of the range and the loop body which will be
inserted repeatedly.

(defmacro defcollector (name list-op)
‘(defmacro ,name ((var start end) &body code)
‘(,’,list-op
,@(loop for i from start to end collect

1

2

3

4

5 ‘(symbol-macrolet ((,var ,i))
6 ,@code)))))

7
8
9

(defcollector unroll progn)
(defcollector collect clist)

The above defined collect macro can be used, e.g., to gen-
erate tables:
1 (decl ((double sin[360]

2 (collect (u 0O 359)
3 (lisp (sin (¥ pi (/ u 180.0))))))))

The resulting code is entirely static and should not require
run-time overhead to initialize the table:

1 double sin[360] = {0.00000, 0.01745, 0.03490, ...};

Clearly, many more advanced loop transformation methods
could be applied, such as ‘peeling’ as demonstrated in Sec-
tion 6.2.

5.2 Configuring Variants

The most straight-forward application of variant-selection
is using templates. This can be as simple as providing basic
type names, e.g. in a matrix function, and as elaborate as
redefining key properties of the algorithm at hand, as shown
in the following as well as in Section 6.

Figure 3 shows a rather contrived example where the man-
ner in which a graph is traversed is decoupled from the action
at each node. This is not an unusual setup. In our approach,
however, there is no run-time cost associated with this flex-
ibility. In this example the traversal method used is given
to a macro (find-max) which embeds its own code into the
body of the expansion of this traversal. This kind of ex-
pansion is somewhat similar to compile-time :before and
:after methods.

We assert that having this kind of flexibility without any
run-time costs at all allows for more experimentation in
performance-critical code (which we demonstrate in Sec-
tion 6.2). This is especially useful as changes to the code
automatically propagate to all versions generated from it,
which enables the maintenance of multitudinous versions
over an extended period of time. Another application of
this technique is in embedded systems where the code size
has influence on the system performance and where run-time
configuration is not an option.

(defmacro find-max (graph trav)
‘(decl ((int max (val (root ,graph))))
(,trav ,graph
(if (> (val curr) max)
(set max (val curr))))))

(defmacro push-stack (v)
“(if ,v (set stack[++spl ,v)))
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(defmacro preorder-traversal (graph &body code)
‘(decl ((nodex* stack[NI])
(int sp 0))

(set stack[0] (root ,graph))

(while (>= sp 0)
15 (decl ((node* curr stack[sp--1))
16 ,@code
17 (push-stack (left curr))
18 (push-stack (right curr))))))

[
R SR

20 (defmacro breath-first-traversal (graph &body code)

21 “(decl ((queue* q (make-queue)))

22 (enqueue q ,graph)

23 (while (not (empty q))

24 (decl ((nodex curr (dequeue q)))

25 ,@code

26 (if (left curr)

27 (enqueue q (left curr)))

28 (if (right curr)

29 (enqueue gq (right curr)))))))

31 (function foo ((graph *g)) -> int
32 (find-max g
33 preorder -traversal))

Figure 3: This example illustrates the configuration
of an operation (find-max) with two different graph
traversal algorithms. Note that this setup does not
incur run-time overhead.

5.3 Domain-Specific Languages

To illustrate the definition and use of embedded domain-
specific languages we present a syntax to embed elegant and
concise regular expression handling in CGen code. Figure 4
provides a very simple implementation with the following
syntax.

1 (match text

2 ("([~.]1*)" (printf "proper list.\n"))
3 (G (printf "improper list.\n")))

The generated code can be seen in Figure 5. Note how
the output code is structured to only compute the regular
expression representations that are required.

1 (defmacro match (expression &rest clauses)

2 ‘(macrolet

3 ((match-int (expression &rest clauses)

4 ‘(progn

5 (set reg_err (regcomp &reg

6 ,(caar clauses)
7 REG_EXTENDED))
8 (if (regexec &reg ,expression 0 0 0)
9 (progn ,@(cdar clauses))

10 ,(lisp (if (cdr clauses)

11 ‘(match-int

12 ,expression

13 ,@(cdr clauses))))))))
14 (decl ((regex_t reg)

15 (int reg_err))

16 (match-int ,expression ,@clauses))))

Figure 4: An example of an embedded domain-
specific language for providing an elegant syntax for
checking a string against a set of regular expressions.



if (regexec(&reg, text, 0, 0, 0))
printf ("improper list.\n");

1 regex_t reg;

2 int reg_err;

3 reg_err = regcomp(&reg, "([~.1*)", REG_EXTENDED);
4 if (regexec(&reg, text, 0, 0, 0))

5 printf ("proper list.\n");

6 else {

7 reg_err = regcomp (&reg, ".*\.", REG_EXTENDED);
8

9

}

-
o

Figure 5: Code resulting from application of the syn-
tax defined in Figure 4.

Clearly, more elaborate variants are possible. Consider,
e.g., the popular CL-PPCRE [29] library which analyzes the
individual regular expressions and, if static, precomputes
the representation. This is not directly applicable to the C
regular expression library used here but can be understood
as selectively removing the call to regcomp.

5.4 Layered Abstractions

One of the canonical examples of aspect-oriented program-
ming is the integration of logging into a system. Without
language support it is tedious work to integrate consistent
logging into all functions that require it.

Figure 6 presents a macro that automatically logs function
calls and the names and values of the parameters, simply by
defining the function with a different form:

1 (function foo (...) ...) ; does not log
2 (function+ foo (...) ...) ; logs

With this definition in place the following form

1 (function+ foo ((int n) (float delta)) -> void
2 (return (bar n delta)))

evaluates to the requested function:

(function foo ((int n) (float delta)) -> void
(progn
(printf
"called foo(n = %d, delta = %f)\n" n delta)
(return (bar n delta))))

AW N o=
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With this technique it is easily possible to redefine and
combine different language features while honoring the sepa-
ration of concerns principle. The most simple implementa-
tion facilitating this kind of combination would be defining a
macro that applies all requested extensions to a given prim-
itive. This could be managed by specifying a set of globally
requested aspects which are then integrated into each func-
tion (overwriting the standard definition).

1 (defmacro function+ (name param arr ret &body body)
2 ‘(function ,name ,param ,arr ,ret

3 (progn

4 (printf

5 ,(format

6 nil "called ~“a("{~"a = ~“a”~, “})\n" name
7 (loop for item in parameter append

8 (list (format nil "~a"

9 (first (reverse item)))
10 (map-type-to-printf

11 (second (reverse item))))))
12 ,@(loop for item in parameter collect

13 (first (reverse item))))

14 ,@body)))

Figure 6: Implementation of the logging aspect.

6. EVALUATION

It is hard to overestimate the importance of con-
cise notation for common operations.
B. Stroustrup [27]

As already exemplified in Section 5.3, the quoted text is
certainly true, and we agree that the language user, not
the designer, knows what operations are to be considered
‘common’ the best.

In the following we will first present a natural notation
for SIMD expressions which are very common in high-per-
formance code. This is followed by an application of our sys-
tem to a classical problem of high-performance computing
which demonstrates how redundancy can be avoided with
separation of concerns thereby being applied.

6.1 A Natural Notation for SIMD Arithmetic

SIMD (single instruction, multiple data) is a very common
approach to data parallelism, applied in modern CPUs by
the SSE [10], AVX [11] and Neon [2] instruction sets. These
allow applying a single arithmetic or logic operation (e.g.
an addition) to multiple (2, 4, 8, or 16) registers in a single
cycle. Naturally, such instruction sets are very popular in
high-performance applications where they enable the system
to do more work in the same amount of time. The examples
in this section will make use of so-called intrinsics, which
are functions recognized by the compiler to map directly to
assembly instructions.

As an example the following code loads two floating point
values from consecutive memory locations into an SSE reg-
ister and adds another register to it.

1 __ml128d reg_a = _mm_load_pd(pointer);
2 reg_a = _mm_add_pd(reg_a, reg_b);

Obviously, more complicated expressions soon become un-
readable and require disciplined documentation. Consider,
e.g., the expression (x+y+z)*.5 which would be written as:

1 _mm_mul_pd(

2 _mm_add_pd (

3 X,

4 _mm_add_pd(y, z)),
5 .5);

There are, of course, many approaches to solving this prob-
lem. We compare the light-weightedness and quality of ab-
straction in our method to a hand-crafted DSL implemented
in C using the traditional compiler tools, as well as to an ad
hoc code generator framework such as Mako [5]. We argue
that the scope of this problem (with the exception of the
extreme case of auto-vectorization [17]) does not justify the
application of large scale-systems such as writing a source
to source compiler using the Clang framework [28].

Traditional Solution.

Our first approach to supply a more readable and config-
urable notation of SIMD instructions employed traditional
compiler technology. The intrinsify program reads a file
and copies it to its output while transforming expressions
that are marked for conversion to intrinsics (after generat-
ing an AST for the sub expression using [12] and [20]). The
marker is a simple comment in the code, e.g. we transform
the following code



__m128d accum, factor;

for (int i = 0; i < N; i++) {
__m128d curr _mm_load_pd(base + i);
//#INT accum accum + factor * curr;

[SISEROCR CR

}

to produce code that contains the appropriate intrinsics:

1 __m128d accum, factor;

2 for (int i = 0; i < N; i++) {

3 __m128d curr = _mm_load_pd(base + i);
4 //#INT accum = accum + factor * curr;
5 accum = _mm_add_pd(

6 accum,

7 _mm_mul_pd(

8 factor,

9 curr

10 )

11 )

}

o
N

The instruction set (SSE or AVX) to generate code for can
be selected at compile-time.

String-Based Approach.

Using Mako [5] we implemented an ad hoc code generator
which runs the input data through Python. In this process
the input file is simply copied to the output file and em-
bedded Python code is evaluated on the fly. The previous
example is now written as:

1 __m128d accum, factor;

2 for (int i = 0; i < N; i++) {

3 __m128d curr = _mm_load_pd(base + i);

4 ${with_sse(set_var "accum"

5 (add "accum"

6 (mul "factor" "curr")))};
7}

Note how all the data handed to the Python function is
entirely string based.

Using CGen.
With our system the extended notation is directly embed-
ded in the source language as follows:

(decl ((__m128d accum)
(__m128d factor))
(for ((int i 0) (< i N) i++)
(intrinsify
(decl ((mm curr (load-val (aref base i))))
(set accum (+ accum (*x factor curr)))))))

o G A W N R

Comparison.

The implementation of the intrinsify program is around
1,500 lines of C/Lex/Yacc code. Using those tools the cal-
culator grammar is very manageable and can be extended
in numerous ways to provide a number of different features.
Our use case is to automatically convert numeric constants
into SIMD format, i.e. converting //#INT x = 0.5 * x; to

1 _m128d ¢_0_500 = _mm_setl_pd(0.5);
2 x = _mm_mul_pd(c_0_500, x);

Since keeping track of names that have already been gener-
ated is straight-forward, this is a robust approach to further
simplify the notation. Note that it is not easily possible to
move such temporaries out of loops as this would require the
construction of a rather complete AST which was clearly not
the intention of writing such a tool. This example demon-
strates that once the initial work is completed such a system
can be easily extended and maintained.

The string-based version, on the other hand, is very light-
weight and only takes up 60 lines of code. Even though

this shows that such abstractions can be constructed on de-
mand and the return on the work invested is obtained very
quickly, the resulting syntax is not very far from writing the
expressions themselves. The extension to extract numeric
constants heavily relies on regular expressions and can only
be considered maintainable as long as the code does not grow
much larger. Further code inspection and moving generated
expressions out of loops is not easily integrated.

The implementation of our intrinsify macro consists of
45 lines of code, which is comparable to the Python im-
plementation. The notation, however, is very elegant and
convenient and the extraction and replacement of constants
are simple list operations. As an example, obtaining the list
of numbers in an expression is concisely written as:

1 (remove-duplicates
2 (remove-if-not #’numberp (flatten body))

6.2 A Configurable Jacobi Solver

In the field of high performance computing a large class
of algorithms rely on stencil computations [3]. As a simple
example we consider a 2-D Jacobi kernel for solving the heat
equation. Hereby a point in the destination grid is updated
with the mean value of its direct neighbors from the source
grid. After all points have been updated in this way the
grids are swapped and the iteration starts over.

Whereas for the chosen example, shown in Figure 7, state-
of-the-art compilers can perform vectorization of the code,
they fail at more complicated kernels as they appear, e.g.
in computational fluid dynamics. This often leads to hand-
crafted and hand-tuned variants of such kernels for several
architectures and instruction sets, for example with the use
of intrinsics. In all further examples we assume that the
alignment of the source and destination grid differ by 8-
bytes, i.e. the size of a double precision value.

1 #define I(x, y) (((y) * NX) + (x))

2 double dest[NX * NY], src[NX * NY], * tmp;

3

4 void Kernel(double *dst, double *top,

5 double *center, double *bottom,

6 int len) {

7 for (int x = 0; x < len; ++x)

8 dst[x] = 0.256 * (top[x] + center[x-1] +

9 center [x+1] + bottom[x]);
10 )

11

12 void Iterate() {

13 while (iterate) {

14 for (int y = 1; y < NY - 1; ++y)

15 Kernel (&dest [I(1,y)], &src[I(1l,y-1)1,
16 &src[I(1l,y)], &srcl[I(l,y+1)],
17 NX-2);

18 swap (src, dest);

19 }

20 }

Figure 7: A simple 2-D Jacobi kernel without any
optimizations applied.

Figure 8 shows how a hand-crafted version using intrinsics
targetting SSE may look. In this example double precision
floating point numbers are used, i.e. the intrinsics work on
two values at a time. At the end of the function there is a
‘peeled off’, non-vectorized version of the stencil operation
to support data sets of uneven width. Even for this very
simple example the code already becomes rather complex.



double *bottom, int len) {
const __m128d c_0_25 = _mm_set_pd(0.25);
__m128d t, cl, cr, b;

for (int x = 0; x < len - (len % 2); x += 2) {
t = _mm_loadu_pd(&topl[x]);
cl = _mm_loadu_pd(&center[x - 11);
cr = _mm_loadu_pd(&center[x + 1]);
b = _mm_loadu_pd(&bottom[x]);
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_mm_storeu_pd (&dst [x],
_mm_mul_pd(

_mm_add_pd (
_mm_add_pd(t, cl),
_mm_add_pd(cr, b)),

c_0_25));

e
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if (len % 2) {
int x = len - 1;
dst[x] = 0.25 * (topl[x] + center[x - 1] +
center[x + 1] + bottom([x]);
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Figure 8: The same operation as shown in Figure 7
but targetting SSE.

A further optimized version could use the non-temporal
store instruction (MOVNTPD) to by-pass the cache when
writing to memory, which in turn would require a 16-byte
alignment of the store address. This would necessitate a
manual update of the first element in the front of the loop if
its address is incorrectly aligned. Further, for AVX-variants
of the kernel the loop increment becomes four since four
elements are processed at once. The peeling of elements in
front (for non-temporal stores) and after the loop (for left-
over elements) would make further loops necessary.

In the following we show how a simple domain-specific
approach can implement separation on concerns, i.e. sepa-
rate the intrinsics optimizations from the actual stencil used.
This frees the application programmer from a tedious reim-
plementation of these optimizations for different stencils and
cumbersome maintenance of a number of different versions
of each kernel.

We implemented a set of macros to generate the differ-
ent combinations of aligned/unaligned and scalar/SSE/AVX
kernels in 260 lines of code (not further compacted by meta
macros). The invocation

1 (defkernel KermelScalar (:arch :scalar)
2 (x 0.25 (+ (left) (right) (top) (bottom))))

produces the following kernel, virtually identical to Figure 7:

1 void KernelScalar (double *dst, double *top,

2 double *center, double *bottom,
3 int len) {

4 for (int x = 0; x < len; x += 1)

5 dst[x] = 0.25 * (center[x-1] + center [x+1]
6 + top[x] + bottom[x]);

7 return;

s }

The invocation of

1 (defkernel KernelSSE (:arch :sse)
(* 0.25 (+ (left) (right) (top) (bottom))))

generates code very similar to Figure 8 (not shown again
for a more compact representation), and the most elaborate
version, an AVX kernel with alignment, can be constructed
using

void KernelSSE(double #*d, double *top, double *center,

1 (defkernel KernelAlignedAVX (:arch :avx :align t)
2 (* 0.25 (+ (left) (right) (top) (bottom))))

The resulting code is shown in Figure 9. Note how for each
kernel generated exactly the same input routine was spec-
ified. The vectorization is implemented analogous to the
method described in Section 6.1. In this version, however,
we extracted the numeric constants of the complete function
and moved them before the loop.

1 void KernelAlignedAVX(double #*dst, double *top,

2 double *center, double *bottom,
3 int len) {

4 int x = 03

5 const __m256d avx_c_0_25_2713

6 = _mm256_setl_pd(0.25);

7 __m256d avx_tmp1590;

8 __m256d avx_tmp1437;

9 __m256d avx_tmp1131;

10 __m256d avx_tmp1284;

11 int v_start = 0;

12 while (((ulong)dst) % 32 != 0) {

13 dst[v_start] = 0.25 * (center[v_start-1]
14 + center [v_start+1]
15 + toplv_start]

16 + bottom[v_start]);
17 ++v_start;

18 }

19 int v_len = len - v_start;

20 v_len = (v_len - (v_len % 4)) + v_start;

21 for (int x = v_start; x < v_len; x += 4) {

22 avx_tmpl590 = _mm256_load_pd(center[x-1]);
23 avx_tmpl1437 = _mm256_load_pd(center[x+1]);
24 avx_tmp1131 = _mm256_load_pd(top[x]);

25 avx_tmpl1284 = _mm256_load_pd(bottom[x]);
26 _mm256_store_pd(

27 &dst [x],

28 _mm256 _mul_pd(

29 avx_c_0_25_2713,

30 _mm256_add_pd (

31 _mm256_add_pd (

32 _mm256_add_pd (

33 avx_tmp1590,

34 avx_tmp1437),

35 avx_tmp1131),

36 avx_tmp1284)));

37 }

38 for (int x = v_len; x < len; ++x)

39 dst[x] = 0.25 * (center[x-1] + center[x+1]
10 + top[x] + bottom[x]);

41 return;

42}

Figure 9: The same operation as shown in Figure 7
but targetting aligned AVX and generated by CGen.

7. CONCLUSION

In this paper we presented a code generator that enables
Common Lisp-style meta programming for C-like platforms
and presented numerous examples illustrating its broad ap-
plicability. We also showed how it can be applied to real-
world high-performance computing applications. We showed
how our approach is superior to simple string-based meth-
ods and to what extend it reaches towards large-scale sys-
tems requiring considerable initial overhead. Furthermore,
we showed that our approach is well suited for lowering the
entry barrier of using code generation for situations in which
taking the large-scale approach can’t be justified and simple
string-based applications fail to meet the required demands.
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